论文标题
使用贝叶斯信息融合从众包WAZE数据中发现的紧急事件检测
Emergency Incident Detection from Crowdsourced Waze Data using Bayesian Information Fusion
论文作者
论文摘要
随着城市化的增长,多年来,紧急情况的数量有所增加。这种模式以有限的资源不知所措,并需要优化响应过程。这部分是由于紧急服务的传统“反应性”方法收集有关事件的数据,其中消息来源启动了对紧急电话号码的电话(例如,美国911),延迟并限制了潜在的最佳响应。诸如Waze之类的众包平台提供了一个机会,可以通过人群生成的观察报告来开发快速,“积极”的方法来收集有关事件的数据。但是,报告的事件的报告来源和时空不确定性的可靠性挑战了这种主动方法的设计。因此,本文提出了一种使用嘈杂的众包WAZE数据进行紧急事件检测的新方法。我们提出了一个基于贝叶斯理论的原则计算框架,以模拟人群生成的报告的可靠性及其跨空间和时间的整合以检测事件的不确定性。美国Tenessee在美国的纳什维尔(Nashville)官员报告的事件进行了广泛的实验,美国的Tenesee表明,我们的方法在F1得分和AUC方面都可以胜过强大的基线。这项工作的应用提供了一个可扩展的框架,以合并不同的嘈杂数据源以主动事件检测,以改善和优化社区中的紧急响应操作。
The number of emergencies have increased over the years with the growth in urbanization. This pattern has overwhelmed the emergency services with limited resources and demands the optimization of response processes. It is partly due to traditional `reactive' approach of emergency services to collect data about incidents, where a source initiates a call to the emergency number (e.g., 911 in U.S.), delaying and limiting the potentially optimal response. Crowdsourcing platforms such as Waze provides an opportunity to develop a rapid, `proactive' approach to collect data about incidents through crowd-generated observational reports. However, the reliability of reporting sources and spatio-temporal uncertainty of the reported incidents challenge the design of such a proactive approach. Thus, this paper presents a novel method for emergency incident detection using noisy crowdsourced Waze data. We propose a principled computational framework based on Bayesian theory to model the uncertainty in the reliability of crowd-generated reports and their integration across space and time to detect incidents. Extensive experiments using data collected from Waze and the official reported incidents in Nashville, Tenessee in the U.S. show our method can outperform strong baselines for both F1-score and AUC. The application of this work provides an extensible framework to incorporate different noisy data sources for proactive incident detection to improve and optimize emergency response operations in our communities.