论文标题

铁磁体中的互动稳定的拓扑磁化器绝缘子

Interaction-stabilized topological magnon insulator in ferromagnets

论文作者

Mook, Alexander, Plekhanov, Kirill, Klinovaja, Jelena, Loss, Daniel

论文摘要

冷凝物质系统允许在微不足道的基础状态上允许拓扑集体激发,一个例子是由Dirac Bosons形成的Chern绝缘子在有限的能量处有间隙。但是,与电子相反,没有用于集体激发的粒子量保护定律。这引起了粒子数 - 不融合多体相互作用,这些相互作用对单粒子拓扑的影响是对拓扑量子材料领域的基本兴趣的开放问题。以铁磁体为例,我们以通过在镁质频谱中打开Chern构成的间隙来稳定的拓扑镁绝缘子,以稳定相互作用。这可以追溯到以下事实:粒子非连续相互作用打破了谐波理论的有效时间反转对称性。因此,镁麦克努尼相互作用是拓扑的来源,可以引入手性边缘状态,其手性取决于磁化方向。重要的是,相互作用不一定会引起有害的阻尼,而是会引起拓扑镁的寿命非常长。我们确定了相互作用引起的拓扑相变的两种机制 - 一种是由外部场驱动的,另一个是由温度驱动的 - 并表明它们会导致横向传输信号的非常规符号逆转,尤其是霍尔电导率的逆转。我们确定预计将发生这种多体机制的候选材料,例如金属有机kagome-lattice磁铁铜(1,3-苯并二羧酸盐),van der waals honeycomb-lattice磁铁磁铁CRI $ _3 $,以及多型kamiokite(fe $ _2 $ _2 $ mo $ $ $ $ _3 $ o $ o $ o o $ o o o $ o o o $ o o o $ o o $ o o _8)。我们的结果表明,相互作用可以在产生非平凡拓扑的过程中发挥重要作用。

Condensed matter systems admit topological collective excitations above a trivial ground state, an example being Chern insulators formed by Dirac bosons with a gap at finite energies. However, in contrast to electrons, there is no particle-number conservation law for collective excitations. This gives rise to particle number-nonconserving many-body interactions whose influence on single-particle topology is an open issue of fundamental interest in the field of topological quantum materials. Taking magnons in ferromagnets as an example, we uncover topological magnon insulators that are stabilized by interactions through opening Chern-insulating gaps in the magnon spectrum. This can be traced back to the fact that the particle-number nonconserving interactions break the effective time-reversal symmetry of the harmonic theory. Hence, magnon-magnon interactions are a source of topology that can introduce chiral edge states, whose chirality depends on the magnetization direction. Importantly, interactions do not necessarily cause detrimental damping but can give rise to topological magnons with exceptionally long lifetimes. We identify two mechanisms of interaction-induced topological phase transitions---one driven by an external field, the other by temperature---and show that they cause unconventional sign reversals of transverse transport signals, in particular of the thermal Hall conductivity. We identify candidate materials where this many-body mechanism is expected to occur, such as the metal-organic kagome-lattice magnet Cu(1,3-benzenedicarboxylate), the van der Waals honeycomb-lattice magnet CrI$_3$, and the multiferroic kamiokite (Fe$_2$Mo$_3$O$_8$). Our results demonstrate that interactions can play an important role in generating nontrivial topology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源