论文标题
Anytime-VALID LOGRANK测试:无限层的连续监视下的错误控制
The Anytime-Valid Logrank Test: Error Control Under Continuous Monitoring with Unlimited Horizon
论文作者
论文摘要
我们介绍了Anytime-Valid(AV)Logrank Test,这是LOGRANK测试的版本,该版本可在可选的停止和可选延续下提供I型错误保证。该测试是顺序的,而无需指定最大样本量或停止规则,并允许使用类型I误差控制进行累积荟萃分析。该方法可以扩展以定义任何时间 - valid置信区间。 Logrank测试是基于最近开发的电子变量的Martingale测试的一个实例。我们在半参数的比例危害设置中证明了I型错误保证该测试,并展示了如何将其扩展到纽带,COX的回归和置信序列。在洛格兰克统计量上使用高斯近似值,我们表明,AV Logrank测试(本身总是准确)具有与O'Brien-Fleming Alpha支出相似的拒绝区域,但有可能通过可选的延续来实现100%的功率。尽管我们的研究设计方法需要更大的样本量,但 *预期 *样本量通过可选停止具有竞争力。
We introduce the anytime-valid (AV) logrank test, a version of the logrank test that provides type-I error guarantees under optional stopping and optional continuation. The test is sequential without the need to specify a maximum sample size or stopping rule, and allows for cumulative meta-analysis with type-I error control. The method can be extended to define anytime-valid confidence intervals. The logrank test is an instance of the martingale tests based on E-variables that have been recently developed. We demonstrate type-I error guarantees for the test in a semiparametric setting of proportional hazards and show how to extend it to ties, Cox' regression and confidence sequences. Using a Gaussian approximation on the logrank statistic, we show that the AV logrank test (which itself is always exact) has a similar rejection region to O'Brien-Fleming alpha-spending but with the potential to achieve 100% power by optional continuation. Although our approach to study design requires a larger sample size, the *expected* sample size is competitive by optional stopping.