论文标题
通过一阶和二阶伪型下降的正函数的稀疏表示
Sparse Representations of Positive Functions via First and Second-Order Pseudo-Mirror Descent
论文作者
论文摘要
当要求估算器的范围为非负数时,我们会考虑预期的风险最小化问题,这是由最大似然估计(MLE)和轨迹优化的设置所激发的。为了促进非线性插值,我们假设搜索空间是繁殖的内核希尔伯特空间(RKHS)。我们开发了使用(i)\ emph {pseudo-gradients}和(ii)降低复杂性的投影的随机镜下降的一阶变体。一阶方案中的压缩投影是通过内核正交匹配追击(KOMP)执行的,这克服了一个事实,即Vanilla RKHS参数化在随机设置中与迭代索引无限。此外,当成本的梯度估计仅可计算至某些数值误差时,需要伪级,例如积分近似值。在恒定的步进和压缩预算下,我们在预期的亚临时性的收敛半径与投影预算参数以及模型复杂性上的非反应界限之间建立了权衡。为了完善溶液的精确度,我们开发了二阶扩展,该扩展采用了递归平均的伪梯度外生产产物来近似于Hessian倒数,其均值的融合是在额外的特征值衰减条件下建立在最佳RKHS元素Hessian的额外特征值衰减条件下的,这对于这项工作是唯一的。实验表明实践中对不均匀的泊松过程强度估计的表现出色。
We consider expected risk minimization problems when the range of the estimator is required to be nonnegative, motivated by the settings of maximum likelihood estimation (MLE) and trajectory optimization. To facilitate nonlinear interpolation, we hypothesize that the search space is a Reproducing Kernel Hilbert Space (RKHS). We develop first and second-order variants of stochastic mirror descent employing (i) \emph{pseudo-gradients} and (ii) complexity-reducing projections. Compressive projection in the first-order scheme is executed via kernel orthogonal matching pursuit (KOMP), which overcomes the fact that the vanilla RKHS parameterization grows unbounded with the iteration index in the stochastic setting. Moreover, pseudo-gradients are needed when gradient estimates for cost are only computable up to some numerical error, which arise in, e.g., integral approximations. Under constant step-size and compression budget, we establish tradeoffs between the radius of convergence of the expected sub-optimality and the projection budget parameter, as well as non-asymptotic bounds on the model complexity. To refine the solution's precision, we develop a second-order extension which employs recursively averaged pseudo-gradient outer-products to approximate the Hessian inverse, whose convergence in mean is established under an additional eigenvalue decay condition on the Hessian of the optimal RKHS element, which is unique to this work. Experiments demonstrate favorable performance on inhomogeneous Poisson Process intensity estimation in practice.