论文标题

基于伪 - 促核扩散模型的纹理图像分类

Texture image classification based on a pseudo-parabolic diffusion model

论文作者

Vieira, Jardel, Abreu, Eduardo, Florindo, Joao B.

论文摘要

这项工作提出了一种基于用于纹理识别的伪 - 促递序扩散过程的新方法。提出的操作员在一系列时间尺度上应用,从而产生由非线性过滤器转换的图像家族。因此,这些图像中的每一个都是由本地描述符编码的(我们为此目的使用局部二进制模式),并通过简单的直方图总结它们,以这种方式产生图像特征向量。对拟议的方法进行了测试,该方法是根据建立良好的基准纹理数据库的分类以及植物物种识别的实际任务的测试。在这两种情况下,都将其与用于纹理识别的几种最先进的方法进行了比较。我们的建议在分类准确性方面优于这些方法,从而确认其竞争力。良好的性能可以在很大程度上可以通过伪 - 羟基助手操作员的能力来平滑图像中均匀区域内部嘈杂的细节,同时它可以保留为对象描述传达关键信息的不连续性。这样的结果还证实,基于模型的方法(例如提议的方法)仍然可以与无所不在的基于学习的方法具有竞争力,尤其是当用户无法访问强大的计算结构和大量标记数据进行培训时。

This work proposes a novel method based on a pseudo-parabolic diffusion process to be employed for texture recognition. The proposed operator is applied over a range of time scales giving rise to a family of images transformed by nonlinear filters. Therefore each of those images are encoded by a local descriptor (we use local binary patterns for that purpose) and they are summarized by a simple histogram, yielding in this way the image feature vector. The proposed approach is tested on the classification of well established benchmark texture databases and on a practical task of plant species recognition. In both cases, it is compared with several state-of-the-art methodologies employed for texture recognition. Our proposal outperforms those methods in terms of classification accuracy, confirming its competitiveness. The good performance can be justified to a large extent by the ability of the pseudo-parabolic operator to smooth possibly noisy details inside homogeneous regions of the image at the same time that it preserves discontinuities that convey critical information for the object description. Such results also confirm that model-based approaches like the proposed one can still be competitive with the omnipresent learning-based approaches, especially when the user does not have access to a powerful computational structure and a large amount of labeled data for training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源