论文标题
通过跨订单跨语义深网络稳健的面部标志性检测
Robust Facial Landmark Detection by Cross-order Cross-semantic Deep Network
论文作者
论文摘要
最近,基于卷积的神经网络(CNN)面部标志性检测方法取得了巨大的成功。但是,大多数现有的基于CNN的面部标志性检测方法并未尝试激活多个相关的面部零件,并从中学习不同的语义特征,他们无法准确地对本地细节之间的关系进行建模,并且无法完全探索更具歧视性和良好的语义特征,因此它们遭受部分闭塞和大姿势变化的影响。为了解决这些问题,我们提出了一个跨阶跨语义深网(CCDN),以增强语义特征学习,以实现强大的面部标志性检测。具体而言,提出了一个跨阶两次多启示(CTM)模块,以引入跨阶通道相关性,以进行更判别的表示学习和多个注意力特定的部分激活。此外,一种新型的跨阶跨语义(COCS)正常化程序旨在推动网络从不同激活中学习跨阶跨词法特征,以进行面部地标检测。有趣的是,通过整合CTM模块和COC正常化程序,提出的CCDN可以有效地激活并学习更多的良好和互补的跨阶跨式跨语义特征,以提高在极具挑战性的场景下的面部地标检测的准确性。关于挑战基准数据集的实验结果证明了我们CCDN优于最先进的面部标志检测方法。
Recently, convolutional neural networks (CNNs)-based facial landmark detection methods have achieved great success. However, most of existing CNN-based facial landmark detection methods have not attempted to activate multiple correlated facial parts and learn different semantic features from them that they can not accurately model the relationships among the local details and can not fully explore more discriminative and fine semantic features, thus they suffer from partial occlusions and large pose variations. To address these problems, we propose a cross-order cross-semantic deep network (CCDN) to boost the semantic features learning for robust facial landmark detection. Specifically, a cross-order two-squeeze multi-excitation (CTM) module is proposed to introduce the cross-order channel correlations for more discriminative representations learning and multiple attention-specific part activation. Moreover, a novel cross-order cross-semantic (COCS) regularizer is designed to drive the network to learn cross-order cross-semantic features from different activation for facial landmark detection. It is interesting to show that by integrating the CTM module and COCS regularizer, the proposed CCDN can effectively activate and learn more fine and complementary cross-order cross-semantic features to improve the accuracy of facial landmark detection under extremely challenging scenarios. Experimental results on challenging benchmark datasets demonstrate the superiority of our CCDN over state-of-the-art facial landmark detection methods.