论文标题
高速边界层过渡的观察模拟
Observation-infused simulations of high-speed boundary layer transition
论文作者
论文摘要
高速边界层过渡对通常不确定的自由流扰动非常敏感。这种不确定性损害了模型和模拟的预测。为了增强模拟的保真度,我们将其直接注入可用的观察结果。我们的方法是一般的,可以使用任何仿真工具来采用,并在此使用直接数值模拟进行证明。进行了合奏变异(Envar)优化,从而确定最佳重现观测值的上游流量。成本功能可以说明我们对模型和观察结果的相对信心,而合奏成员的明智选择可以改善收敛并减少预测不确定性。我们证明了在4.5马赫4.5下的边界层过渡的观察预测。在没有事先了解自由流条件的情况下,仅在独立计算(真流)的孤立位置观察到壁压,都可以确定所有相关的流入干扰。然后,我们评估了整个流场,超出了原始的有限墙观测值,并与数据一致地解释模拟,反之亦然。我们的预测流与真实的“未知”状态相比,详细分析了差异。我们还检查了观测加权的影响。证明了反问题的收敛性和流入幅度和相的准确性的改善,并通过二维不稳定,混乱的对流的简单例子来解释。
High-speed boundary-layer transition is extremely sensitive to the free-stream disturbances which are often uncertain. This uncertainty compromises predictions of models and simulations. To enhance the fidelity of simulations, we directly infuse them with available observations. Our methodology is general and can be adopted with any simulation tool, and is herein demonstrated using direct numerical simulations. An ensemble variational (EnVar) optimization is performed, whereby we determine the upstream flow that optimally reproduces the observations. The cost functional accounts for our relative confidence in the model and the observations, and judicious choice of the ensemble members improves convergence and reduces the prediction uncertainty. We demonstrate our observation-infused predictions for boundary-layer transition at Mach 4.5. Without prior knowledge of the free-stream condition, and using only observations of wall pressure at isolated locations from an independent computation (true flow), all of the relevant inflow disturbances are identified. We then evaluate the entire flow field, beyond the original limited wall observations, and interpret simulations consistently with data and vice versa. Our predicted flow compares favorably to the true `unknown' state, and discrepancies are analyzed in detail. We also examine the impact of weighting of observations. Improved convergence of the inverse problem and accuracy of the inflow amplitudes and phases are demonstrated, and are explained by aid of a simple example from two-dimensional unstable, chaotic convection.