论文标题
通过空间结构的光束中的香农熵量化信息
Quantifying information via Shannon entropy in spatially structured optical beams
论文作者
论文摘要
尽管信息在现代生活中无处不在,共享和分析,但围绕嘈杂的光学渠道中信息的数量和质量的方式仍然存在一些争议。已经开发了许多基于条件的香农熵和Fisher信息的理论方法,以及一些实验验证。其中一些方法仅限于某个字母,而当考虑具有非平凡结构的光束时,例如Hermite-Gauss,Laguerre-Gauss和其他具有非平凡结构的模式。在这里,我们通过Wigner分布函数提出了对经典香农信息的新定义,同时尊重海森堡不平等。按照此定义,我们在并置的高斯,雌雄同体高斯和拉瓜仪激光模式下计算信息量,并通过从结构化激光束的强度分布中重建Wigner分布函数来实验验证它。我们通过实验证明了允许在单数光学元件中推断激光束的场结构以评估包含信息的量的技术。鉴于一般性,通过分析梁复杂性来定义信息的方法适用于任何拓扑的激光模式,这些拓扑模式可以通过“持续性”函数描述。以这种方式定义的经典香农信息与特定字母(即通信方案)分离,并以系统的结构复杂性为标度。 Wigner分布函数之间的这种协同作用涵盖了真实和相互空间中的信息,以及信息是疾病的量度,可以导致未来的相干检测算法和遥感。
While information is ubiquitously generated, shared, and analyzed in a modern-day life, there is still some controversy around the ways to asses the amount and quality of information inside a noisy optical channel. A number of theoretical approaches based on, e.g., conditional Shannon entropy and Fisher information have been developed, along with some experimental validations. Some of these approaches are limited to a certain alphabet, while others tend to fall short when considering optical beams with non-trivial structure, such as Hermite-Gauss, Laguerre-Gauss and other modes with non-trivial structure. Here, we propose a new definition of classical Shannon information via the Wigner distribution function, while respecting the Heisenberg inequality. Following this definition, we calculate the amount of information in a Gaussian, Hermite-Gaussian, and Laguerre-Gaussian laser modes in juxtaposition and experimentally validate it by reconstruction of the Wigner distribution function from the intensity distribution of structured laser beams. We experimentally demonstrate the technique that allows to infer field structure of the laser beams in singular optics to assess the amount of contained information. Given the generality, this approach of defining information via analyzing the beam complexity is applicable to laser modes of any topology that can be described by 'well-behaved' functions. Classical Shannon information defined in this way is detached from a particular alphabet, i.e. communication scheme, and scales with the structural complexity of the system. Such a synergy between the Wigner distribution function encompassing the information in both real and reciprocal space, and information being a measure of disorder, can contribute into future coherent detection algorithms and remote sensing.