论文标题

细长对象检测:诊断和改进

Slender Object Detection: Diagnoses and Improvements

论文作者

Wan, Zhaoyi, Chen, Yimin, Deng, Sutao, Chen, Kunpeng, Yao, Cong, Luo, Jiebo

论文摘要

在本文中,我们关注的是具有极端长宽比的特定类型对象的检测,即\ textbf {细长对象}。在实际情况下,苗条的对象实际上对检测系统的目的非常普遍且至关重要。但是,这种类型的对象在很大程度上被先前的对象检测算法忽略了。在我们的调查中,对于经典的对象检测方法,如果仅在细长的对象上评估,就可以观察到可可的$ 18.9 \%$地图的急剧下降。因此,我们系统地研究了这项工作中细长对象检测的问题。因此,建立了具有精心设计的基准和评估协议的分析框架,可以检查和比较不同的算法和模块。 \新的我们的研究表明,可以实现有效的细长对象检测〜\ textbf {没有一个}(1)基于锚定的本地化; (2)专门设计的框表示。相反,\ textbf {改善细长对象检测的关键方面是特征适应}。它识别并扩展了以前未经证实的现有方法的见解。此外,我们提出了一种特征适应策略,该策略比当前代表性对象检测方法实现了明确,一致的改进。

In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely \textbf{slender objects}. In real-world scenarios, slender objects are actually very common and crucial to the objective of a detection system. However, this type of objects has been largely overlooked by previous object detection algorithms. Upon our investigation, for a classical object detection method, a drastic drop of $18.9\%$ mAP on COCO is observed, if solely evaluated on slender objects. Therefore, we systematically study the problem of slender object detection in this work. Accordingly, an analytical framework with carefully designed benchmark and evaluation protocols is established, in which different algorithms and modules can be inspected and compared. \New Our study reveals that effective slender object detection can be achieved ~\textbf{with none of} (1) anchor-based localization; (2) specially designed box representations. Instead, \textbf{the critical aspect of improving slender object detection is feature adaptation}. It identifies and extends the insights of existing methods that are previously underexploited. Furthermore, we propose a feature adaption strategy that achieves clear and consistent improvements over current representative object detection methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源