论文标题

深度学习基准和数据集用于社交媒体图像分类以进行灾难响应

Deep Learning Benchmarks and Datasets for Social Media Image Classification for Disaster Response

论文作者

Alam, Firoj, Ofli, Ferda, Imran, Muhammad, Alam, Tanvirul, Qazi, Umair

论文摘要

在一次灾难活动中,社交媒体上共享的图像有助于危机经理获得情境意识,并评估损害赔偿以及其他响应任务。计算机视觉和深层神经网络的最新进展使得开发了许多任务的实时图像分类模型,包括检测危机事件,过滤无关紧要的图像,将图像分类为特定的人道主义类别,并评估损害的严重程度。尽管做了几项努力,但过去的作品主要遭受有限的资源(即标记图像)的损失,可用于培训更强大的深度学习模型。在这项研究中,我们提出了新的数据集,以进行灾难类型检测,信息性分类以及损害严重性评估。此外,我们将现有的公开数据集重新标记为新任务。我们识别精确的和近乎解倍的材料以形成非重叠的数据拆分,并最终合并它们以创建较大的数据集。在我们的广泛实验中,我们基准了几种最先进的深度学习模型,并取得了令人鼓舞的结果。我们公开发布我们的数据集和模型,旨在提供适当的基线,并刺激危机信息学界的进一步研究。

During a disaster event, images shared on social media helps crisis managers gain situational awareness and assess incurred damages, among other response tasks. Recent advances in computer vision and deep neural networks have enabled the development of models for real-time image classification for a number of tasks, including detecting crisis incidents, filtering irrelevant images, classifying images into specific humanitarian categories, and assessing the severity of damage. Despite several efforts, past works mainly suffer from limited resources (i.e., labeled images) available to train more robust deep learning models. In this study, we propose new datasets for disaster type detection, and informativeness classification, and damage severity assessment. Moreover, we relabel existing publicly available datasets for new tasks. We identify exact- and near-duplicates to form non-overlapping data splits, and finally consolidate them to create larger datasets. In our extensive experiments, we benchmark several state-of-the-art deep learning models and achieve promising results. We release our datasets and models publicly, aiming to provide proper baselines as well as to spur further research in the crisis informatics community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源