论文标题
多层Janus Mosse系统的多重控制
Multiple Control of Few-layer Janus MoSSe Systems
论文作者
论文摘要
在基于密度功能理论的计算工作中,我们研究了不对称多层MOSSE连接的电子和电子传输特性,称为Janus连接。着眼于4层系统,我们研究了电场,静电掺杂,应变和层间堆叠对电子结构的影响。我们发现,金属到半导体过渡可以由平面外电场诱导。这种过渡的关键电场可以通过平面双轴压缩应变来降低。由于固有的电场,4层的MOSSE可以纠正平面外电流。在模型结ZR/4层MOSSE/ZR中,整流比达到34.1。通过增加MOSSE层的数量,可以进一步提高该比率。此外,由于面内双轴拉伸应变,我们显示了4层MOSSE的突然垂直压缩,表明第二相跃迁。此外,观察到观察到观察到Zr/$ n $ layer Mosse/Zr连接的Fermi Energy对电子传输的奇数影响,$ n = 1,\,2,\,\,3,\,\,\,\,\,10 $。这些发现揭示了物理学在这个不对称系统中的丰富性,并强烈表明4层MOSSE的性能是高度可调的,因此为将来的实验提供了指南,该指南将材料研究和纳米电子学有关。
In this computational work based on density functional theory we study the electronic and electron transport properties of asymmetric multi-layer MoSSe junctions, known as Janus junctions. Focusing on 4-layer systems, we investigate the influence of electric field, electrostatic doping, strain, and interlayer stacking on the electronic structure. We discover that a metal to semiconductor transition can be induced by an out-of-plane electric field. The critical electric field for such a transition can be reduced by in-plane biaxial compressive strain. Due to an intrinsic electric field, a 4-layer MoSSe can rectify out-of-plane electric current. The rectifying ratio reaches 34.1 in a model junction Zr/4-layer MoSSe/Zr. This ratio can be further enhanced by increasing the number of MoSSe layers. In addition, we show a drastic sudden vertical compression of 4-layer MoSSe due to in-plane biaxial tensile strain, indicating a second phase transition. Furthermore, an odd-even effect on electron transmission at the Fermi energy for Zr/$n$-layer MoSSe/Zr junctions with $n=1, \, 2,\, 3, \,\dots,\, 10$ is observed. These findings reveal the richness of physics in this asymmetric system and strongly suggest that the properties of 4-layer MoSSe are highly tunable, thus providing a guide to future experiments relating materials research and nanoelectronics.