论文标题
使用图形神经网络分布式调度
Distributed Scheduling using Graph Neural Networks
论文作者
论文摘要
无线网络设计中的一个基本问题是以分布式方式有效安排传输。主要挑战源于以下事实:最佳链接计划涉及解决最大加权独立集(MWIS)问题,即NP-HARD。对于实际链接调度方案,通常使用分布式贪婪的方法来近似MWIS问题的解决方案。但是,这些贪婪的方案大多忽略了无线网络的重要拓扑信息。为了克服这一限制,我们提出了一个基于图形卷积网络(GCN)的分布式MWIS求解器。简而言之,可训练的GCN模块学习在调用贪婪的求解器之前将其与网络权重结合的拓扑感知节点嵌入。在具有数十个链接的中小型无线网络中,即使是基于GCN的MWIS调度程序,也可以利用图形的拓扑信息减少一半的分布式贪婪求解器的次级隔离间隙,并且具有良好的概括性概括性,并且跨图的概述,并且复杂性的最小增加。
A fundamental problem in the design of wireless networks is to efficiently schedule transmission in a distributed manner. The main challenge stems from the fact that optimal link scheduling involves solving a maximum weighted independent set (MWIS) problem, which is NP-hard. For practical link scheduling schemes, distributed greedy approaches are commonly used to approximate the solution of the MWIS problem. However, these greedy schemes mostly ignore important topological information of the wireless networks. To overcome this limitation, we propose a distributed MWIS solver based on graph convolutional networks (GCNs). In a nutshell, a trainable GCN module learns topology-aware node embeddings that are combined with the network weights before calling a greedy solver. In small- to middle-sized wireless networks with tens of links, even a shallow GCN-based MWIS scheduler can leverage the topological information of the graph to reduce in half the suboptimality gap of the distributed greedy solver with good generalizability across graphs and minimal increase in complexity.