论文标题

准备实时建筑能源模拟的天气数据

Preparing Weather Data for Real-Time Building Energy Simulation

论文作者

MeshkinKiya, Maryam, Paolini, Riccardo

论文摘要

这项研究介绍了一个用于测量天气数据的质量控制的框架,包括异常检测和填充缺失值。天气数据是建筑绩效模拟的基本输入,其中丢失数据导致了模拟过程的意外终止,其中的结果异常缺陷。传统上,天气数据中的缺少值是通过周期性或线性插值执行的。但是,当缺失值超过许多小时以上时,传统方法的准确性可能会辩论。这项研究表明,与其他监督学习方法相比,神经网络如何提高数据推出的准确性。通过通过意大利米兰附近的气象站网络来预测观察地点缺失的温度和相对湿度数据来验证该框架。结果表明,所提出的方法可以促进具有准确和快速质量控制的实时建筑模拟。

This study introduces a framework for quality control of measured weather data, including anomaly detection, and infilling missing values. Weather data is a fundamental input to building performance simulations, in which anomalous values defect the results while missing data lead to an unexpected termination of the simulation process. Traditionally, infilling missing values in weather data is performed through periodic or linear interpolations. However, when missing values exceed many consecutive hours, the accuracy of traditional methods is subject to debate. This study demonstrates how Neural Networks can increase the accuracy of data imputation when compared to other supervised learning methods. The framework is validated by predicting missing temperature and relative humidity data for an observation site, through a network of nearby weather stations in Milan, Italy. Results show that the proposed method can facilitate real-time building simulations with accurate and rapid quality control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源