论文标题

能源知识的深入加强学习计划的传感器时间和空间相关

Energy Aware Deep Reinforcement Learning Scheduling for Sensors Correlated in Time and Space

论文作者

Hribar, Jernej, Marinescu, Andrei, Chiumento, Alessandro, DaSilva, Luiz A.

论文摘要

在多种情况下,用于监视目的的数百万电池供电的传感器,例如农业,智能城市,行业等,都需要节能解决方案来延长其寿命。当这些传感器观察到在空间中分布并随时间发展的现象时,预计收集的观测值将在时间和空间中相关。在本文中,我们提出了一种深入的加固学习(DRL)的调度机制,能够利用相关信息。我们使用深层确定性策略梯度(DDPG)算法设计解决方案。所提出的机制能够确定传感器应传输更新的频率,以确保准确收集观测值,同时考虑可用的能量。为了评估我们的调度机制,我们使用多个数据集,其中包含多个实际部署中获得的环境观察。真正的观察结果使我们能够建模机制尽可能实际相互作用的环境。我们证明我们的解决方案可以显着延长传感器的寿命。我们将我们的机制与理想化的全知的调度程序进行比较,以证明其性能几乎是最佳的。此外,我们通过显示传感器能量水平对更新频率的影响来强调设计的独特特征,即能量意识。

Millions of battery-powered sensors deployed for monitoring purposes in a multitude of scenarios, e.g., agriculture, smart cities, industry, etc., require energy-efficient solutions to prolong their lifetime. When these sensors observe a phenomenon distributed in space and evolving in time, it is expected that collected observations will be correlated in time and space. In this paper, we propose a Deep Reinforcement Learning (DRL) based scheduling mechanism capable of taking advantage of correlated information. We design our solution using the Deep Deterministic Policy Gradient (DDPG) algorithm. The proposed mechanism is capable of determining the frequency with which sensors should transmit their updates, to ensure accurate collection of observations, while simultaneously considering the energy available. To evaluate our scheduling mechanism, we use multiple datasets containing environmental observations obtained in multiple real deployments. The real observations enable us to model the environment with which the mechanism interacts as realistically as possible. We show that our solution can significantly extend the sensors' lifetime. We compare our mechanism to an idealized, all-knowing scheduler to demonstrate that its performance is near-optimal. Additionally, we highlight the unique feature of our design, energy-awareness, by displaying the impact of sensors' energy levels on the frequency of updates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源