论文标题
用可决定的假设学习语言
Learning Languages with Decidable Hypotheses
论文作者
论文摘要
在限制的语言学习中,最常见的假设类型是为一种语言提供枚举。这种所谓的$ w $ index允许命名任意枚举的语言,这是因为即使是会员资格问题也不确定。在本文中,我们使用了一个不同的系统,该系统允许命名任意可决定的语言,即针对特征功能的程序(称为$ c $ - indices)。这些指数的缺点是,现在给定的假设甚至是合法的$ c $ index,现在无法确定。 在与$ c $ - indices的学习的首次分析中,我们同时与$ w $ indices相比,使用$ c $ indices的各种限制的学习能力进行结构化说明。我们建立了学习能力的层次结构,具体取决于是否需要$ c $ indices(a)所有输出; (b)仅在与班级相关的输出上,并且(c)仅在最终,正确的假设中以限制。此外,所有这些设置都比用$ w $ indices学习(即使仅限于可计算语言的类别)要弱。我们还分析了与数据显示方式有关的所有这些问题。 最后,我们还询问了语义与句法收敛的关系,并为这两种收敛性以及各种形式的数据表示形式得出成对关系的图。
In language learning in the limit, the most common type of hypothesis is to give an enumerator for a language. This so-called $W$-index allows for naming arbitrary computably enumerable languages, with the drawback that even the membership problem is undecidable. In this paper we use a different system which allows for naming arbitrary decidable languages, namely programs for characteristic functions (called $C$-indices). These indices have the drawback that it is now not decidable whether a given hypothesis is even a legal $C$-index. In this first analysis of learning with $C$-indices, we give a structured account of the learning power of various restrictions employing $C$-indices, also when compared with $W$-indices. We establish a hierarchy of learning power depending on whether $C$-indices are required (a) on all outputs; (b) only on outputs relevant for the class to be learned and (c) only in the limit as final, correct hypotheses. Furthermore, all these settings are weaker than learning with $W$-indices (even when restricted to classes of computable languages). We analyze all these questions also in relation to the mode of data presentation. Finally, we also ask about the relation of semantic versus syntactic convergence and derive the map of pairwise relations for these two kinds of convergence coupled with various forms of data presentation.