论文标题
合作伙伴推荐的时间序列快照网络:关于OSS的案例研究
Time-Series Snapshot Network for Partner Recommendation: A Case Study on OSS
论文作者
论文摘要
最近十年见证了开源软件(OSS)的快速增长。尽管如此,即使他们热衷于做出贡献,所有贡献者也可能会发现很难吸收OSS社区。因此,我们建议跨不同角色的合作伙伴推荐可能使用户和开发人员受益,即,一旦我们能够为有需要的人做出成功的建议,它可能会极大地促进开发人员和用户的热情,从而进一步增强OSS Projects的开发。在这种潜力的激励下,我们通过网络嵌入方法将合作伙伴建议作为链接预测任务建模。在本文中,我们介绍了时间序列快照网络(TSSN),该网络是一个混合网络,用于对用户和开发人员之间的交互作用进行建模。基于已建立的TSSN,我们执行时间偏见的步行(TBW),以自动捕获电子邮件网络的时间和结构信息,即OSS电子邮件网络中个人之间的行为相似性。十个Apache数据集的实验表明,所提出的TBW显着优于许多高级随机步行的嵌入方法,从而导致最先进的建议性能。
The last decade has witnessed the rapid growth of open source software (OSS). Still, all contributors may find it difficult to assimilate into OSS community even they are enthusiastic to make contributions. We thus suggest that partner recommendation across different roles may benefit both the users and developers, i.e., once we are able to make successful recommendation for those in need, it may dramatically contribute to the productivity of developers and the enthusiasm of users, thus further boosting OSS projects' development. Motivated by this potential, we model the partner recommendation as link prediction task from email data via network embedding methods. In this paper, we introduce time-series snapshot network (TSSN) which is a mixture network to model the interactions among users and developers. Based on the established TSSN, we perform temporal biased walk (TBW) to automatically capture both temporal and structural information of the email network, i.e., the behavioral similarity between individuals in the OSS email network. Experiments on ten Apache datasets demonstrate that the proposed TBW significantly outperforms a number of advanced random walk based embedding methods, leading to the state-of-the-art recommendation performance.