论文标题

E. Nelson对量子力学的随机解释的发展。 Schrodinger-Euler-Poisson方程的推导

Development of a Stochastic Interpretation of Quantum Mechanics by E. Nelson. Derivation of the Schrodinger-Euler-Poisson Equations

论文作者

Batanov-Gaukhman, Mikhail

论文摘要

本文的目的是基于平衡“秩序”和“混乱”之间的系统内部矛盾(即反间对称性)来开发量子力学对量子力学的随机解释。对于设定的任务,建议将两个相互相反的系统形成原则结合在一起:“最小动作的原理”和“最大熵的原理”将其纳入一个“平均效率极值的原理”。在详细考虑混沌流浪粒子的平均状态时,获得了时间依赖时间(固定)和时间依赖性的随机Schrodinger-euler-poisson方程,作为在研究中找到全球平均效率函数功能的极端条件。所得的随机方程与相应的Schrodinger方程与系数一致。在这种情况下,降低的普朗克常数与粒子质量的比率是通过三维随机过程的平均特征表达的,在该过程中,所考虑的流浪粒子参与其中。获得的随机方程适用于描述任何规模的随机系统的量子状态。

The aim of the article is to develop the stochastic interpretation of quantum mechanics by E. Nelson on the basis of balancing the intra-systemic contradiction (i.e., antisymmetry) between "order" and "chaos". For the set task, it is proposed to combine two mutually opposite system-forming principles: "the principle of least action" and "the principle of maximum entropy" into one the "principle of averaged efficiency extremum". In a detailed consideration of the averaged states of a chaotically wandering particle, the time-independent (stationary) and time-dependent stochastic Schrodinger-Euler-Poisson equations are obtained as conditions for finding the extremals of the functional of the globally averaged efficiency functional of the stochastic system under study. The resulting stochastic equations coincides with the corresponding Schrodinger equations up to coefficients. In this case, the ratio of the reduced Planck constant to the particle mass is expressed through the averaged characteristics of a three-dimensional random process in which the considered wandering particle participates. The obtained stochastic equations are suitable for describing the quantum states of stochastic systems of any scale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源