论文标题
从单粒子跟踪实验中扩散系数的最大似然估计值
Maximum likelihood estimates of diffusion coefficients from single-particle tracking experiments
论文作者
论文摘要
单分子定位显微镜使从业人员可以在生物系统中找到和跟踪标记的分子。从所得轨迹中提取扩散系数时,通常在均方分化曲线上进行线性拟合是常见的实践。但是,该策略是次优的,容易出现错误。最近,结果表明,观察到的位置之间的增量为扩散系数提供了良好的估计,并且它们的统计数据非常适合基于似然的分析方法。在这里,我们通过使用最大似然原理从单粒子跟踪实验中提取扩散系数的问题。利用有效的真实空间配方,我们将模型扩展到了亚群的混合物的扩散系数不同,我们在预期最大化算法的帮助下估算了该模型。这种公式自然会导致轨迹向亚群的概率分配。我们采用该理论来分析无法用单个扩散系数来解释的实验跟踪数据。我们测试了数据集对扩散模型的假设的符合程度,并借助于已知的分析分布的质量因素来确定亚群的最佳数量。为了促进从业人员的使用,我们提供了对理论的快速开放代码实施,以同时对任意维度的多个轨迹进行有效分析。
Single-molecule localization microscopy allows practitioners to locate and track labeled molecules in biological systems. When extracting diffusion coefficients from the resulting trajectories, it is common practice to perform a linear fit on mean-square-displacement curves. However, this strategy is suboptimal and prone to errors. Recently, it was shown that the increments between observed positions provide a good estimate for the diffusion coefficient, and their statistics are well-suited for likelihood-based analysis methods. Here, we revisit the problem of extracting diffusion coefficients from single-particle tracking experiments subject to static and dynamic noise using the principle of maximum likelihood. Taking advantage of an efficient real-space formulation, we extend the model to mixtures of subpopulations differing in their diffusion coefficients, which we estimate with the help of the expectation-maximization algorithm. This formulation naturally leads to a probabilistic assignment of trajectories to subpopulations. We employ the theory to analyze experimental tracking data that cannot be explained with a single diffusion coefficient. We test how well a dataset conforms to the assumptions of a diffusion model and determine the optimal number of subpopulations with the help of a quality factor of known analytical distribution. To facilitate use by practitioners, we provide a fast open-source implementation of the theory for the efficient analysis of multiple trajectories in arbitrary dimensions simultaneously.