论文标题
GL-COARSENER:图表表示框架,用于构建AMG求解器的粗网格层次结构
GL-Coarsener: A Graph representation learning framework to construct coarse grid hierarchy for AMG solvers
论文作者
论文摘要
在许多数值方案中,计算复杂性随问题大小而非线性缩放。使用直接方法或大多数迭代方法求解方程的线性系统是一个典型的示例。代数多网格(AMG)方法是用于有效求解大型线性系统的数值方法。 AMG方法之间的主要差异之一是如何从给定的细网格构建粗网格。 AMG方法有两种主要类别;基于图和聚集的粗化方法。在这里,我们提出了一个基于聚合的粗化框架,利用图表表示学习和聚类算法。我们的方法将机器学习的力量引入了AMG研究领域,并为未来的研究打开了新的观点。提出的方法使用图表表示技术来学习从系数的基础矩阵获得的图形的潜在特征。使用这些提取的功能,我们从细网格中产生了一个更粗的网格。所提出的方法高度能够平行计算。我们的实验表明,所提出的方法在求解大型系统方面的效率与其他基于聚合的方法非常可比,这证明了图表学习在设计多机求解器中的高能力。
In many numerical schemes, the computational complexity scales non-linearly with the problem size. Solving a linear system of equations using direct methods or most iterative methods is a typical example. Algebraic multi-grid (AMG) methods are numerical methods used to solve large linear systems of equations efficiently. One of the main differences between AMG methods is how the coarser grid is constructed from a given fine grid. There are two main classes of AMG methods; graph and aggregation based coarsening methods. Here we propose an aggregation-based coarsening framework leveraging graph representation learning and clustering algorithms. Our method introduces the power of machine learning into the AMG research field and opens a new perspective for future researches. The proposed method uses graph representation learning techniques to learn latent features of the graph obtained from the underlying matrix of coefficients. Using these extracted features, we generated a coarser grid from the fine grid. The proposed method is highly capable of parallel computations. Our experiments show that the proposed method's efficiency in solving large systems is closely comparable with other aggregation-based methods, demonstrating the high capability of graph representation learning in designing multi-grid solvers.