论文标题
识别用于补偿设计的NARX模型
Identification of NARX Models for Compensation Design
论文作者
论文摘要
该报告介绍了三个系统的建模结果,两个系统和一个实验。在数值示例中,我们使用先前在文献中获得的数学模型作为要识别的系统。第一个数值示例是一个由Hammerstein模型描述的多项式非线性的加热系统。第二个是一个代表压电执行器中滞后行为的Bouc-wen模型。最后,实验示例是一个气动瓣膜,呈现出各种非线性,包括滞后。对于每个示例,使用两种良好的技术一起鉴定了具有外源输入(NARX)的非线性自回归模型,将误差比(ERR)方法合计,以层次选择回归器和Akaike的信息标准(AIC)来缩小术语数量。使用两种方法,都可以选择结构选择。激发输入的设计基于保留感兴趣的频率并迫使系统实现不同的操作点。因此,我们使用ERR和AIC选择的结构,我们使用扩展的最小二乘(ELS)算法来估计参数。结果表明,可以识别不超过五个术语的推荐系统。这些确定的模型将用于未来工作中的非线性补偿。
This report presents the modeling results for three systems, two numerical and one experimental. In the numerical examples, we use mathematical models previously obtained in the literature as the systems to be identified. The first numerical example is a heating system with a polynomial nonlinearity that is described by a Hammerstein model. The second is a Bouc-Wen model that represents the hysteretic behavior in a piezoelectric actuator. Finally, the experimental example is a pneumatic valve that presents a variety of nonlinearities, including hysteresis. For each example, a Nonlinear AutoRegressive model with eXogenous inputs (NARX) is identified using two well-established techniques together, the Error Reduction Ratio (ERR) method to hierarchically select the regressors and the Akaike's Information Criterion (AIC) to truncate the number of terms. Using both approaches, the structure selection is achieved. The design of the excitation input is based on preserving the frequencies of interest and force the system to achieve different points of operation. Hence, having the structure previously selected with ERR and AIC, we use the Extended Least Squares (ELS) algorithm to estimate the parameters. The results show that it is possible to identify the referred systems with no more than five terms. These identified models will be used for nonlinearity compensation in future works.