论文标题
数据驱动的调制和无线数字通信信号的天线分类
Data-Driven Modulation and Antenna Classification of Wireless Digital Communication Signals
论文作者
论文摘要
在本文中,我们有兴趣从无线数字调制信号中学习该信号的发射器(TX)使用的天线数量,以及其特定的调制方案(来自相移键合(PSK)或正交振幅调制(QAM))。正式地,这些是调制和天线分类问题。我们研究了基于数据驱动的机器学习(ML)技术的问题。最初对调制的两个子问题和发射机天线分类的数量进行独立检查,以获取系统参数的多样性,即SNR,接收器数量(RX)天线和分类算法。然后,我们考虑遵循两种方法的联合问题。其中一个,其中子问题是独立解决和并行求解的,而天线分类器则在调制分类器的结果上等待。提出的两个方案不需要使用使用的调制方案的任何知识/详细信息,并且使用TX天线(空间多路复用,时空代码等)的方式,因为它是完全数据驱动的,而不是基于决策理论的。我们方法的结果的特征是高分类精度,它们为更基于ML的数据驱动技术铺平了道路,这些技术揭示了TX的更多特征。
In this paper we are interested to learn from a wireless digitally modulated signal the number of antennas that the transmitter (Tx) of this signal uses, as well as its specific modulation scheme (from phase-shift keying (PSK) or quadrature amplitude modulation (QAM)). Formally, these are modulation and antenna classification problems. We examine the problems with data-driven machine learning (ML)-based techniques. The two sub-problems of modulation and number of transmitter antenna classification are initially examined independently for a variety for system parameters, namely the SNR, number of receiver (Rx) antennas, and classification algorithms. Then we consider the joint problem where we follow two approaches. One, where the sub-problems are solved independently and in parallel, and one where the antenna classifier waits on the result of the modulation classifier. The two proposed schemes do not require any knowledge/details of the used modulation schemes and the way the Tx antennas are used (spatial multiplexing, space-time codes,etc.) as it is fully data-driven and not decision-theoretic based. The results of our approach are characterized by high classification accuracy and they pave the way for more ML-based data-driven techniques that reveal more characteristics of the Tx.