论文标题
循环组和QNEC
Loop Groups and QNEC
论文作者
论文摘要
我们研究了循环组模型的一些分析属性,表明循环组$ lg $的正能表示(PER)可以扩展到$ h^{3/2}}(s^1,g)$的每个紧凑,简单且简单连接的Lie Group $ G $。然后,我们明确计算应力能量张量对$ H^{5/2}(s^1,g)$的伴随动作,我们使用这些结果证明量子无效的能量条件(QNEC)和Bekenstein绑定了通过将Sobolev循环涂在真空吸尘器上获得的状态。我们还提供了更简单的证明,证明了$ g = su(n)$中的这些最后结果。最后,我们构建和研究了循环集团的共形网的孤子表达,这是由循环通过$ -1 $不连续的循环引起的。
We investigate some analytical properties of loop group models, showing that a Positive Energy Representation (PER) of a loop group $LG$ can be extended to a PER of $H^{3/2}(S^1,G)$ for any compact, simple and simply connected Lie group $G$. We then explicitly compute the adjoint action of $H^{5/2}(S^1,G)$ on the stress energy tensor and we use these results to prove the Quantum Null Energy Condition (QNEC) and the Bekenstein Bound for states obtained by applying a Sobolev loop to the vacuum. We also give a simpler proof of these last results in the case $G=SU(n)$. Finally, we construct and study solitonic representations of the loop group conformal nets induced by the conjugation by a loop with a discontinuity in $-1$.