论文标题
一个新的行星形成和迁移的窗口:超热木星中的耐火与挥发性元素比率
A New Window into Planet Formation and Migration: Refractory-to-Volatile Elemental Ratios in Ultra-hot Jupiters
论文作者
论文摘要
系外行星表征的主要目标是使用行星当前的构图来了解该行星的形成方式。例如,C/O比率长期以来一直被认为是携带有关挥发性物种化学的重要信息。在这次对话中,通常不考虑耐火元素,例如Fe,Mg和Si,因为它们将其凝结成Fe(S)或MGSIO $ _3 $之类的固体,并且将从大约2000〜K中的外部活动中可观察到的气氛凉爽的可观察到的气氛中删除。然而,高于2000〜k的行星高,称为超热木星(UHJS),足够温暖,可以在很大程度上避免耐火材料的凝结。在本文中,我们探讨了这样的见解,即难治性丰度的测量可以带入行星的起源。通过耐火元素的元素丰度比,我们可以估计行星的大气岩石对冰分的分数,并约束行星的形成和迁移情景。我们首先将行星的当今难治性与挥发性比与其岩石与冰的比率联系起来,从形成的岩石与冰比使用了多种组合模型,用于原动星际磁盘的岩石和冰冷成分。我们讨论潜在的混杂因素,例如核心中重金属和凝结的重金属。然后,我们使用PETRA的低分辨率UV-IR传输谱进行了大气检索,并使用Petra的低分辨率UV-IR传输谱进行了测量,从中我们可以估计,从中估算出5.0 $^{+6.0} _ { - 2.7} _ { - 2.7} \ times $ solar $ solar un solar和岩石 - 冰层比率为5.0 $^{+6.0} _ {+6.0} _ {+6.0} _ {+6.0}。该结果与岩石行星的大气富集一致。最后,我们讨论了在JWST的到来以及在低分辨率和高分辨率下结合观察结果的超热木星中的耐火与挥发性比的丰富潜力。
A primary goal of exoplanet characterization is to use a planet's current composition to understand how that planet formed. For example, the C/O ratio has long been recognized as carrying important information on the chemistry of volatile species. Refractory elements, like Fe, Mg, and Si, are usually not considered in this conversation because they condense into solids like Fe(s) or MgSiO$_3$ and would be removed from the observable, gaseous atmosphere in exoplanets cooler than about 2000~K. However, planets hotter than about 2000~K, called ultra-hot Jupiters (UHJs), are warm enough to largely avoid the condensation of refractory species. In this paper, we explore the insight that the measurement of refractory abundances can provide into a planet's origins. Through refractory-to-volatile elemental abundance ratios, we can estimate a planet's atmospheric rock-to-ice fraction and constrain planet formation and migration scenarios. We first relate a planet's present-day refractory-to-volatile ratio to its rock-to-ice ratio from formation using various compositional models for the rocky and icy components of the protoplanetary disk. We discuss potential confounding factors like the sequestration of heavy metals in the core and condensation. We then show such a measurement using atmospheric retrievals of the low-resolution UV-IR transmission spectrum of WASP-121b with PETRA, from which we estimate a refractory-to-volatile ratio of 5.0$^{+6.0}_{-2.7}\times$ solar and a rock-to-ice ratio greater than 2/3. This result is consistent with significant atmospheric enrichment by rocky planetismals. Lastly, we discuss the rich future potential for measuring refractory-to-volatile ratios in ultra-hot Jupiters with the arrival of JWST and by combining observations at low- and high-resolution.