论文标题

使用少于120行代码

Efficient space-time reduced order model for linear dynamical systems in Python using less than 120 lines of code

论文作者

Kim, Youngkyu, Wang, Karen May, Choi, Youngsoo

论文摘要

动态问题的经典减少订单模型(ROM)通常仅涉及给定问题的空间减少。最近,已经开发了一种新的用于线性动力学问题的时空ROM,这进一步降低了问题的大小,除了降低空间,而准确性降低而没有太大的损失。作者显示了一千个加速的顺序,对于大规模的玻尔兹曼运输问题,相对误差小于0.00001。在这项工作中,我们首次提出线性动力学系统及其相应块结构的时空彼得 - 盖尔金投影的推导。利用这些块结构,我们证明了具有两个模型问题的时空方法方法的易于构建:2D扩散和2D对流扩散,有或没有线性源项。对于每个问题,我们演示了生成完整订单模型(FOM)数据(构建时空ROM)并预测减少订单解决方案的整个过程,所有过程均在少于120行Python代码中。我们将我们的Petrov-Galerkin方法与传统的Galerkin方法进行了比较,并表明时空ROM可以将O(100)用O(0.001)与O(0.0001)相对误差实现O(100)加速。最后,我们为时空彼得罗夫 - 加利尔金投影提供了误差分析,并得出了误差结合,与传统的空间Galerkin ROM方法相比,它显示出改进。

A classical reduced order model (ROM) for dynamical problems typically involves only the spatial reduction of a given problem. Recently, a novel space-time ROM for linear dynamical problems has been developed, which further reduces the problem size by introducing a temporal reduction in addition to a spatial reduction without much loss in accuracy. The authors show an order of a thousand speed-up with a relative error of less than 0.00001 for a large-scale Boltzmann transport problem. In this work, we present for the first time the derivation of the space-time Petrov-Galerkin projection for linear dynamical systems and its corresponding block structures. Utilizing these block structures, we demonstrate the ease of construction of the space-time ROM method with two model problems: 2D diffusion and 2D convection diffusion, with and without a linear source term. For each problem, we demonstrate the entire process of generating the full order model (FOM) data, constructing the space-time ROM, and predicting the reduced-order solutions, all in less than 120 lines of Python code. We compare our Petrov-Galerkin method with the traditional Galerkin method and show that the space-time ROMs can achieve O(100) speed-ups with O(0.001) to O(0.0001) relative errors for these problems. Finally, we present an error analysis for the space-time Petrov-Galerkin projection and derive an error bound, which shows an improvement compared to traditional spatial Galerkin ROM methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源