论文标题

用于遗传类别的衍生类别的淤积物体的减少方法

A reduction approach to silting objects for derived categories of hereditary categories

论文作者

Dai, Wei, Fu, Changjian

论文摘要

令$ \ Mathcal {h} $为具有有限尺寸$ \ perperatorname {hom} $和$ \ operatorname {ext} $ space的字段$ k $的遗传性阿贝利安类别。事实证明,有限的派生类别$ \ MATHCAL {d}^b(\ MATHCAL {h})$具有一个灰烬对象,如果F $ \ MATHCAL {H} $具有倾斜对象Iff $ \ Mathcal {d}^b(d}^b(d}^b(\ nathcal {h})$ ext $ ext $ ext $ ext $ ext $ acivir $ act ac ac acy cartearn $ - 一路上,我们获得了一个新的证明,证明了$ \ Mathcal {d}^b(\ Mathcal {h})$的每个主持对象都是部分淤积对象。我们还考虑了对简单有思想的收藏的补充问题。与推荐对象相反,$ \ Mathcal {r} $ of $ \ MATHCAL {d}^b(\ Mathcal {h})$的$ \ Mathcal {r} $可以完成简单的集合,即$ \ operatatorNorname {ext} $ - $ \ nathcal的Quiviver $ \ Mathcal {R} $ acyc LIC {R} $ acyclic is Acyc acy acy。

Let $\mathcal{H}$ be a hereditary abelian category over a field $k$ with finite dimensional $\operatorname{Hom}$ and $\operatorname{Ext}$ spaces. It is proved that the bounded derived category $\mathcal{D}^b(\mathcal{H})$ has a silting object iff $\mathcal{H}$ has a tilting object iff $\mathcal{D}^b(\mathcal{H})$ has a simple-minded collection with acyclic $\operatorname{Ext}$-quiver. Along the way, we obtain a new proof for the fact that every presilting object of $\mathcal{D}^b(\mathcal{H})$ is a partial silting object. We also consider the question of complements for pre-simple-minded collections. In contrast to presilting objects, a pre-simple-minded collection $\mathcal{R}$ of $\mathcal{D}^b(\mathcal{H})$ can be completed into a simple-minded collection iff the $\operatorname{Ext}$-quiver of $\mathcal{R}$ is acyclic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源