论文标题

注意事项:对通用自动驾驶用例的自适应行人轨迹预测

Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards Generic Autonomous Vehicle Use Cases

论文作者

Li, Kunming, Eiffert, Stuart, Shan, Mao, Gomez-Donoso, Francisco, Worrall, Stewart, Nebot, Eduardo

论文摘要

共享行人环境中的自动驾驶汽车导航需要能够准确和最小的延迟来预测未来的人群运动。了解预测的不确定性也是至关重要的。然而,大多数现有方法只能通过重复对生成模型的重复采样来估计不确定性。此外,大多数当前的预测模型都在使用空中视图的数据集上培训,这些模型在数据集上训练了人群的完全可观察性。从车辆的角度来看,这些通常不能代表现实世界的使用,并且当板上传感器被遮挡时,可能导致低估不确定性界限。受到先前使用时空图的运动预测工作的启发,我们提出了一种新型的图形卷积神经网络(GCNN)基于注意的方法,注意力为GCNN,该方法通过在图表中分配了注意力的注意力来汇总人群中人群之间隐含相互作用的信息。可以训练我们的模型以输出概率分布或更快的确定性预测,从而证明需要具有不确定性范围的速度或准确性的自动驾驶使用情况。为了进一步改善预测模型的培训,我们提出了一个自动标记的人行人数据集,该数据集是从智能车辆平台代表的,代表了现实世界中使用的智能车辆平台。通过在许多数据集上的实验,我们显示了我们提出的方法可以通过快速推理速度提高了平均位移误差(ADE)和12%的最终位移误差(FDE)的改进。

Autonomous vehicle navigation in shared pedestrian environments requires the ability to predict future crowd motion both accurately and with minimal delay. Understanding the uncertainty of the prediction is also crucial. Most existing approaches however can only estimate uncertainty through repeated sampling of generative models. Additionally, most current predictive models are trained on datasets that assume complete observability of the crowd using an aerial view. These are generally not representative of real-world usage from a vehicle perspective, and can lead to the underestimation of uncertainty bounds when the on-board sensors are occluded. Inspired by prior work in motion prediction using spatio-temporal graphs, we propose a novel Graph Convolutional Neural Network (GCNN)-based approach, Attentional-GCNN, which aggregates information of implicit interaction between pedestrians in a crowd by assigning attention weight in edges of the graph. Our model can be trained to either output a probabilistic distribution or faster deterministic prediction, demonstrating applicability to autonomous vehicle use cases where either speed or accuracy with uncertainty bounds are required. To further improve the training of predictive models, we propose an automatically labelled pedestrian dataset collected from an intelligent vehicle platform representative of real-world use. Through experiments on a number of datasets, we show our proposed method achieves an improvement over the state of art by 10% Average Displacement Error (ADE) and 12% Final Displacement Error (FDE) with fast inference speeds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源