论文标题

使用和缩放猴子皮质的开源尖峰多面积模型

Usage and Scaling of an Open-Source Spiking Multi-Area Model of Monkey Cortex

论文作者

van Albada, Sacha Jennifer, Pronold, Jari, van Meegen, Alexander, Diesmann, Markus

论文摘要

我们正在进入“大”计算神经科学的年龄,其中神经网络模型的大小和基础数据集数量正在增加。仅通过大型团队的努力,可以将模型的动物园合并为与广泛数据一致的大型模型,这些模型可以分布在多个研究机构中。为了确保计算神经科学家可以在彼此的工作基础上构建,重要的是要使模型公开可用并有据可查的代码。本章介绍了这样的开源模型,该模型将猕猴的所有与视觉相关的皮质区域的连通性结构与其静止状态动力学联系起来。我们简要概述了如何使用可执行模型规范,该规范采用NEST作为仿真引擎并显示其运行时缩放。该解决方案是组织未来模型的工作流程的一个例子,从原始的实验数据到结果的可视化,暴露了挑战,并为ICT基础架构建设神经科学提供指导。

We are entering an age of `big' computational neuroscience, in which neural network models are increasing in size and in numbers of underlying data sets. Consolidating the zoo of models into large-scale models simultaneously consistent with a wide range of data is only possible through the effort of large teams, which can be spread across multiple research institutions. To ensure that computational neuroscientists can build on each other's work, it is important to make models publicly available as well-documented code. This chapter describes such an open-source model, which relates the connectivity structure of all vision-related cortical areas of the macaque monkey with their resting-state dynamics. We give a brief overview of how to use the executable model specification, which employs NEST as simulation engine, and show its runtime scaling. The solutions found serve as an example for organizing the workflow of future models from the raw experimental data to the visualization of the results, expose the challenges, and give guidance for the construction of ICT infrastructure for neuroscience.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源