论文标题
毫米波细胞网络中定位性能的统计表征
A Statistical Characterization of Localization Performance in Millimeter-Wave Cellular Networks
论文作者
论文摘要
毫米波(MMWave)通信是在5G无线蜂窝网络中实现高数据速率和低潜伏期的有前途解决方案。由于在MMWave网络中利用了方向波束形成和天线阵列,因此可以获得准确的到达角度(AOA)信息,并用于定位目的。通常由基于固定节点位置评估的CRAMER-RAO下限(CRLB)评估定位系统的性能。但是,该策略只会为特定于感兴趣的情况的CRLB产生固定价值。为了允许随机分布的节点,已经提出了随机几何形状来研究CRLB以进行基于到达时间的定位。据我们所知,尚未对基于AOA的本地化进行调查。在这项工作中,我们有动力考虑MMWave蜂窝网络,并使用随机几何形状得出基于AOA的本地化及其分布的CRLB。我们分析了CRLB如何受节点位置的空间分布(包括目标和参与基站)的影响。为了在具有随机节点位置的网络设置上应用CRLB,我们建议使用有序距离的L/4-The值准确地近似CRLB,其中L是参与基础站的数量。此外,我们得出了MMWave网络的可本质性,这是目标是可定位的概率,并检查网络参数如何影响本地化性能。这些发现为我们深入了解满足特定本地化要求的最佳网络设计。
Millimeter-wave (mmWave) communication is a promising solution for achieving high data rate and low latency in 5G wireless cellular networks. Since directional beamforming and antenna arrays are exploited in the mmWave networks, accurate angle-of-arrival (AOA) information can be obtained and utilized for localization purposes. The performance of a localization system is typically assessed by the Cramer-Rao lower bound (CRLB) evaluated based on fixed node locations. However, this strategy only produces a fixed value for the CRLB specific to the scenario of interest. To allow randomly distributed nodes, stochastic geometry has been proposed to study the CRLB for time-of-arrival-based localization. To the best of our knowledge, this methodology has not yet been investigated for AOA-based localization. In this work, we are motivated to consider the mmWave cellular network and derive the CRLB for AOA-based localization and its distribution using stochastic geometry. We analyze how the CRLB is affected by the node locations' spatial distribution, including the target and participating base stations. To apply the CRLB on a network setting with random node locations, we propose an accurate approximation of the CRLB using the L/4-th value of ordered distances where L is the number of participating base stations. Furthermore, we derive the localizability of the mmWave network, which is the probability that a target is localizable, and examine how the network parameters influence the localization performance. These findings provide us deep insight into optimum network design that meets specified localization requirements.