论文标题

在运输动力学背后发现隐藏的物理

Discovering Hidden Physics Behind Transport Dynamics

论文作者

Liu, Peirong, Tian, Lin, Zhang, Yubo, Aylward, Stephen R., Lee, Yueh Z., Niethammer, Marc

论文摘要

运输过程无处不在。例如,它们是光流方法的核心。或灌注成像,在评估血液传输的地方,最常见的是通过注入示踪剂。对流扩散方程被广泛用于描述这些运输现象。我们的目标是估计以速度和扩散张量场表示的对流扩散方程的基本物理。我们建议在2D和3D图像时间序列之间的自动编码器结构上建立学习框架(YETI),该结构结合了对流扩散模型。为了帮助可识别性,我们开发了一个对流扩散模拟器,该模拟器允许使用速度和扩散张量字段进行监督学习来预训练我们的模型。我们没有直接学习这些速度和扩散张量场,而是介绍了表述,以确保不可压缩的流量和对称的半明确扩散场,并证明了这些表示在提高估计准确性方面的其他好处。我们进一步使用转移学习将中风患者的YETI应用于公共脑磁共振(MR)灌注数据集,并显示出通过估计的速度和扩散张量场成功区分正常脑区域的中风病变与正常脑区域的能力。

Transport processes are ubiquitous. They are, for example, at the heart of optical flow approaches; or of perfusion imaging, where blood transport is assessed, most commonly by injecting a tracer. An advection-diffusion equation is widely used to describe these transport phenomena. Our goal is estimating the underlying physics of advection-diffusion equations, expressed as velocity and diffusion tensor fields. We propose a learning framework (YETI) building on an auto-encoder structure between 2D and 3D image time-series, which incorporates the advection-diffusion model. To help with identifiability, we develop an advection-diffusion simulator which allows pre-training of our model by supervised learning using the velocity and diffusion tensor fields. Instead of directly learning these velocity and diffusion tensor fields, we introduce representations that assure incompressible flow and symmetric positive semi-definite diffusion fields and demonstrate the additional benefits of these representations on improving estimation accuracy. We further use transfer learning to apply YETI on a public brain magnetic resonance (MR) perfusion dataset of stroke patients and show its ability to successfully distinguish stroke lesions from normal brain regions via the estimated velocity and diffusion tensor fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源