论文标题
关于非政治概括曲线的特征
On characterizations of nondicritical generalized curve foliations
论文作者
论文摘要
我们表征了无固定的曲线叶子,并具有固定的降低分离。此外,当平面分析曲线是其降低的分离曲线时,我们给出了统治条件。为此,我们引入了给定1形式的杰出表达式,称为{\ it weierstrass form}。然后,使用Weierstrass形式,我们表征了非智力概括曲线叶子:首先,对于使用折叠式分辨率进行单次分离的叶子;其次,对于使用$ GSV $ index的叶子减少的叶子。在最后一个情况下,表征是我们的主要结果,可以通过叶面的极性和其减少的分离质的极性来解释。
We characterize nondicrital generalized curve foliations with fixed reduced separatrix. Moreover, we give suficient conditions when a plane analytic curve is its reduced separatrix. For that, we introduce a distinguished expression for a given 1-form, called {\it Weierstrass form}. Then, using Weierstrass forms, we characterize the nondicritical generalized curve foliations: first, for foliations with monomial separatrix using toric resolution; second, for foliations with reduced separatrix, using the $GSV$-index. In this last case the characterization, which is our main result, could be interpreted in function of a polar of the foliation and a polar of its reduced separatrix.