论文标题
关于弗里德曼不变和挤压功能的比较
On the comparison of the Fridman invariant and the squeezing function
论文作者
论文摘要
令$ d $为$ \ mathbb {c}^n $,$ n \ ge 1 $中的一个有限域。在本文中,我们在$ d $上研究了两个Biholomormormormormormormormormormormormormormormormormormormormormorphics,Fridman不变性$ e_d(z)$和挤压功能$ s_d(z)$。更具体地说,我们研究了以下两个有关\ textIt {商不变的} $ m_d(z)= s_d(z)/e_d(z)$:1)如果$ d $ in $ d $ d $ biholomorphic to the单位球? 2)$ m_d(z)$不断等于1?我们对两个问题负面回答。
Let $D$ be a bounded domain in $\mathbb{C}^n$, $n\ge 1$. In this paper, we study two biholomorphic invariants on $D$, the Fridman invariant $e_D(z)$ and the squeezing function $s_D(z)$. More specifically, we study the following two questions about the \textit{quotient invariant} $m_D(z)=s_D(z)/e_D(z)$: 1) If $m_D(z_0)=1$ for some $z_0\in D$, is $D$ biholomorphic to the unit ball? 2) Is $m_D(z)$ constantly equal to 1? We answer both questions negatively.