论文标题

Leibnizian Infititesimal演算的程序:三个现代框架中的帐户

Procedures of Leibnizian infinitesimal calculus: An account in three modern frameworks

论文作者

Bair, Jacques, Blaszczyk, Piotr, Ely, Robert, Katz, Mikhail G., Kuhlemann, Karl

论文摘要

莱布尼兹(Leibniz)最近的奖学金试图衡量哪个基础框架提供了莱布尼兹(Leibniziz)演算(LC)程序的最成功说明。尽管许多学者(例如,Ishiguro,Levey)选择了默认的Weierstrassian框架,但Arthur将LC与Lawvere-Kock-Bell的非Archimedean Framework Sia(平滑的无限分析)进行了比较。我们分析了Arthur的比较,并发现它在包括连续体的非固定性,无限侧面多边形以及无穷小数字的虚构性的问题上都充满了误解和误解。拉布因(Rabouin)和亚瑟(Arthur)声称,莱布尼兹(Leibniz)认为无限态度是矛盾的,莱布尼兹(Leibniz)对无与伦比的定义应理解为标称而不是语义。然而,这种说法取决于有界无限和无限无限的莱布尼兹概念的融合,这是早期诺布洛克强调的区别。 罗宾逊框架可以说,最忠实的LC叙述。我们利用一个公理框架进行无限分析,称为SPOT(保守ZF),以提供LC的形式化,包括有界/不绑定的二分法,可分配/不可弥补的二分法,平等的广义关系,直至可忽略不计的术语以及连续性。

Recent Leibniz scholarship has sought to gauge which foundational framework provides the most successful account of the procedures of the Leibnizian calculus (LC). While many scholars (e.g., Ishiguro, Levey) opt for a default Weierstrassian framework, Arthur compares LC to a non-Archimedean framework SIA (Smooth Infinitesimal Analysis) of Lawvere-Kock-Bell. We analyze Arthur's comparison and find it rife with equivocations and misunderstandings on issues including the non-punctiform nature of the continuum, infinite-sided polygons, and the fictionality of infinitesimals. Rabouin and Arthur claim that Leibniz considers infinities as contradictory, and that Leibniz' definition of incomparables should be understood as nominal rather than as semantic. However, such claims hinge upon a conflation of Leibnizian notions of bounded infinity and unbounded infinity, a distinction emphasized by early Knobloch. The most faithful account of LC is arguably provided by Robinson's framework. We exploit an axiomatic framework for infinitesimal analysis called SPOT (conservative over ZF) to provide a formalisation of LC, including the bounded/unbounded dichotomy, the assignable/inassignable dichotomy, the generalized relation of equality up to negligible terms, and the law of continuity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源