论文标题

贝叶斯三胞胎损失:图像检索中的不确定性量化

Bayesian Triplet Loss: Uncertainty Quantification in Image Retrieval

论文作者

Warburg, Frederik, Jørgensen, Martin, Civera, Javier, Hauberg, Søren

论文摘要

图像检索中的不确定性量化对于下游决策至关重要,但它仍然是一个具有挑战性且在很大程度上没有探索的问题。当前估计不确定性的方法的校准较差,计算昂贵或基于启发式方法。我们提出了一种新方法,将图像嵌入为随机特征而不是确定性特征。我们的两个主要贡献是(1)与三胞胎约束相匹配的可能性,并评估锚定接近阳性的概率而不是负面; (2)在特征空间上的先前,可以证明常规L2归一化的合理性。为了确保计算效率,我们得出了后部的变异近似,称为贝叶斯三重态损失,该损失会产生最新的不确定性估计,并匹配当前最新方法的预测性能。

Uncertainty quantification in image retrieval is crucial for downstream decisions, yet it remains a challenging and largely unexplored problem. Current methods for estimating uncertainties are poorly calibrated, computationally expensive, or based on heuristics. We present a new method that views image embeddings as stochastic features rather than deterministic features. Our two main contributions are (1) a likelihood that matches the triplet constraint and that evaluates the probability of an anchor being closer to a positive than a negative; and (2) a prior over the feature space that justifies the conventional l2 normalization. To ensure computational efficiency, we derive a variational approximation of the posterior, called the Bayesian triplet loss, that produces state-of-the-art uncertainty estimates and matches the predictive performance of current state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源