论文标题

严格的不平等,对于在等等约束下最小化Willmore功能

A strict inequality for the minimisation of the Willmore functional under isoperimetric constraint

论文作者

Mondino, Andrea, Scharrer, Christian

论文摘要

受Kusner和Bauer-Kuwert的先前工作的启发,我们证明了两个表面的Willmore能量之间的严格不平等及其在等值约束的背景下的连接总和。在Keller-Mondino-Rivière先前的工作的基础上,我们严格的不平等会导致在每个属中存在等等限制的Willmore问题的最小值,前提是最小的能量严格在$8π$以下。除了几何兴趣之外,在文献中,在脂质双层细胞膜理论中已经研究了这种最小化问题。

Inspired by previous work of Kusner and Bauer-Kuwert, we prove a strict inequality between the Willmore energies of two surfaces and their connected sum in the context of isoperimetric constraints. Building on previous work by Keller-Mondino-Rivière, our strict inequality leads to existence of minimisers for the isoperimetric constrained Willmore problem in every genus, provided the minimal energy lies strictly below $8π$. Besides the geometric interest, such a minimisation problem has been studied in the literature as a simplified model in the theory of lipid bilayer cell membranes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源