论文标题

协变量量子通道的可编程性

Programmability of covariant quantum channels

论文作者

Gschwendtner, Martina, Bluhm, Andreas, Winter, Andreas

论文摘要

可编程量子处理器使用程序寄存器的状态来指定应用于输入寄存器的一组量子通道的一个元素。众所周知,对于任何包含许多统一量子通道(Nielsen和Chuang的无编程定理)的设备有限的程序寄存器,这种设备是不可能的,这意味着不存在通用可编程量子处理器。如果系统具有对称性,情况会发生变化。确实,我们在这里考虑群体融合渠道。如果小组在通道输入上行动不可约束,则可以通过具有有限程序维度的可编程量子处理器来确切实现这些通道(通过传送模拟,该处理器将通道的Choi-Jamiolkowski作为程序作为程序)。此外,通过利用对称群体行动的表示理论,我们展示了如何消除程序中的冗余,并证明所得的程序寄存器具有最小的希尔伯特空间维度。此外,我们在大约实现所有组合渠道的处理器的程序寄存器维度上提供上限和下限。

A programmable quantum processor uses the states of a program register to specify one element of a set of quantum channels which is applied to an input register. It is well-known that such a device is impossible with a finite-dimensional program register for any set that contains infinitely many unitary quantum channels (Nielsen and Chuang's No-Programming Theorem), meaning that a universal programmable quantum processor does not exist. The situation changes if the system has symmetries. Indeed, here we consider group-covariant channels. If the group acts irreducibly on the channel input, these channels can be implemented exactly by a programmable quantum processor with finite program dimension (via teleportation simulation, which uses the Choi-Jamiolkowski state of the channel as a program). Moreover, by leveraging the representation theory of the symmetry group action, we show how to remove redundancy in the program and prove that the resulting program register has minimum Hilbert space dimension. Furthermore, we provide upper and lower bounds on the program register dimension of a processor implementing all group-covariant channels approximately.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源