论文标题

开普勒方程和角动量:历史观点,批判性分析以及对轨道力学/动力学,数学和物理学的发展的影响

Keplers's Equation and Angular Momentum: Historical Perspective, Critical Analysis and Implications for Development of the Orbital Mechanics/Dynamics, Mathematics and Physics

论文作者

Nedic, Slobodan

论文摘要

经过四个多世纪的开普勒方程式的公式和出版物(在天文学的新星)之后,该方程将行星轨迹的怪异(以及随后的)与均匀流动的时间相关联,按照他的第二(区域”法律 - 随后 - 与2n的法律相关 - 均与2n的法律相关 - (零价值)横向加速度受到质疑。在多级,比例 - 不变的力学/动力学(带有增强的中心和扭矩力)的背景下,对椭圆整合,符号整合,符号整合,符号几何/拓扑以及物理和数学连续性之间的联系也有一定的影响。

After some more than four centuries from the formulation and publication (in Astronomia Nova) of the Kepler's Equation, which relates the eccentric (and, intermediately, the true) anomaly of the planetary trajectories to the uniformly flowing time, in accordance with his Second ("Area") law, the subsequently -- in course of development of Orbital Mechanics -- to the 2nd law related and formally derived non-existent (zero-valued) transverse acceleration is questioned. Certain implications to Elliptic Integration, Symplectic Integration, Symplectic Geometry/Topology, as well as the connection between physical and mathematical continua in the context of the multi-level, scale-invariant mechanics/dynamics (with the augmented central and torquing forces) are also briefly hinted to.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源