论文标题

从飞秒到GigAseconds:硅异质结太阳能电池性能降解分析的销售平台

From Femtoseconds to Gigaseconds: The SolDeg Platform for the Performance Degradation Analysis of Silicon Heterojunction Solar Cells

论文作者

Unruh, Davis, Meidanshahi, Reza Vatan, Hansen, Chase, Manzoor, Salman, Goodnick, Stephen M., Bertoni, Mariana I., Zimanyi, Gergely T.

论文摘要

杂联Si太阳能电池表现出明显的性能降解。我们开发了Soldeg平台来建模这种降解,因为随着时间的推移,通过跨能屏障的热激活产生了电子缺陷。首先,使用基于机器学习的高斯近似电势进行了分子动力学模拟以创建A-SI/C-SI堆栈。其次,我们通过集群爆破器创建了震惊的簇。第三,分析了震惊的簇,以确定其中哪些支持电子缺陷。第四,确定了控制这些电子缺陷产生的能屏障的分布。第五,开发了一种加速的蒙特卡洛方法,以模拟整个屏障的热激活时间依赖的缺陷产生。我们的主要结论如下。 (1)通过缺陷产生的A-SI/C-SI堆栈的降解受能屏障的广泛分布控制。 (2)我们开发了Soldeg Platform,以跟踪此宽障碍分布中缺陷生成的微观动态,并确定了时间依赖的缺陷密度$ n(t)$从femtoseconds到GigAseconds,时间超过24个数量级。 (3)我们已经表明,拉伸的指数分析形式可以成功地描述$ n(t)$的缺陷。 (4)我们发现,以相对术语$ v_ \ mathrm {oc} $以每年0.2%的速度降低,而随着时间的推移,我们会放缓。 (5)我们开发了时间对应曲线,以校准和验证太阳能电池的加速测试。我们发现加速度和正常时间之间的简单比例关系$ t_ \ mathrm {Accelerated} \ propto t_ \ mathrm {normal}^{0.85} $。 (6)我们自己对A-SI:H/C-SI堆栈中缺陷产生进行了实验研究。我们发现早期的降解率相对较高,这在较长的时间尺度下大大减慢了。

Heterojunction Si solar cells exhibit notable performance degradation. We developed the SolDeg platform to model this degradation as electronic defects getting generated by thermal activation across energy barriers over time. First, molecular dynamics simulations were performed to create a-Si/c-Si stacks, using a machine-learning-based Gaussian approximation potential. Second, we created shocked clusters by a cluster blaster. Third, the shocked clusters were analyzed to identify which of them supported electronic defects. Fourth, the distribution of energy barriers that control the generation of these electronic defects was determined. Fifth, an accelerated Monte Carlo method was developed to simulate the thermally activated time dependent defect generation across the barriers. Our main conclusions are as follows. (1) The degradation of a-Si/c-Si stacks via defect generation is controlled by a broad distribution of energy barriers. (2) We developed the SolDeg platform to track the microscopic dynamics of defect generation across this wide barrier distribution, and determined the time dependent defect density $N(t)$ from femtoseconds to gigaseconds, over 24 orders of magnitude in time. (3) We have shown that a stretched exponential analytical form can successfully describe the defect generation $N(t)$. (4) We found that in relative terms $V_\mathrm{oc}$ degrades at a rate of 0.2%/year over the first year, slowing with advancing time. (5) We developed the Time Correspondence Curve to calibrate and validate the accelerated testing of solar cells. We found a compellingly simple scaling relationship between accelerated and normal times $t_\mathrm{accelerated} \propto t_\mathrm{normal}^{0.85}$. (6) We ourselves carried out experimental studies of defect generation in a-Si:H/c-Si stacks. We found a relatively high degradation rate at early times, that slowed considerably at longer time scales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源