论文标题
用于投影表面的大量自动形态的有限轨道
Finite orbits for large groups of automorphisms of projective surfaces
论文作者
论文摘要
我们研究紧凑型投射表面的非元素群体的有限轨道。特别是,我们证明,如果表面和组是在数字k上定义的,并且该组包含抛物线元素,则有限轨道的集合不是zariski密度,除非在某些非常僵化的情况下(称为kummer示例)。当k = c时,还建立了相关结果。给出了与此类自动形态组相关的“规范矢量高度”的描述。
We study finite orbits for non-elementary groups of automorphisms of compact projective surfaces. In particular we prove that if the surface and the group are defined over a number field k and the group contains parabolic elements, then the set of finite orbits is not Zariski dense, except in certain very rigid situations, known as Kummer examples. Related results are also established when k=C. An application is given to the description of "canonical vector heights" associated to such automorphism groups.