论文标题

属性引导的对抗性训练鲁棒性对自然扰动

Attribute-Guided Adversarial Training for Robustness to Natural Perturbations

论文作者

Gokhale, Tejas, Anirudh, Rushil, Kailkhura, Bhavya, Thiagarajan, Jayaraman J., Baral, Chitta, Yang, Yezhou

论文摘要

尽管在强大的深度学习中的现有工作集中在基于小像素级规范的小型扰动上,但这可能无法解释在几个现实世界中遇到的扰动。在许多这样的情况下,尽管可能无法使用测试数据,但可以知道有关扰动类型(例如旋转程度)的广泛规格。我们考虑了一种设置,可以预期在不是I.I.D.但是偏离训练领域。尽管这种偏差可能尚不清楚,但就属性而言,其广泛的表征是先验的。我们提出了一种对抗性训练方法,该方法学会生成新样本,以最大程度地接触分类器对属性空间的暴露,而无需从测试域中访问数据。我们的对手训练解决了最大最大化的最大化,从而解决了最大化的对抗性扰动,而外部最小化查找模型参数通过优化从内部最大化产生的对抗性扰动上的损失。我们证明了我们的方法在三种天然发生的扰动上的适用性 - 与对象相关的偏移,几何变换和常见的图像损坏。我们的方法使深度神经网络能够与广泛发生的自然扰动相对强大。我们通过展示了使用我们对MNIST,CIFAR-10和CLEVR数据集的新变体训练的深度神经网络的稳健性增长来证明拟议方法的有用性。

While existing work in robust deep learning has focused on small pixel-level norm-based perturbations, this may not account for perturbations encountered in several real-world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源