论文标题

分形仪表理论

Fractonic gauge theory of smectics

论文作者

Zhai, Zhengzheng, Radzihovsky, Leo

论文摘要

由条纹相关的量子物质动机,以及最近在二维(2D)晶体的弹性与计量理论之间发展的二元性,我们得出了双耦合u(1)二维(1)矢量理论的二维(2D)量级量子的载体理论,在其中披露仅映射到我们的植物性电荷上,我们证明了将层次映射到层次上。在希格斯过渡后,量表二元的量规偶会出现,同时也会出现,对应于其偶极凝结的单个风味,这是通过脱位增殖的各向异性量子熔化。另一个希格斯过渡描述了第二个位错味的凝结,描述了近晶熔化。我们还利用这种二元性的静电极限来根据较高的衍生式正弦戈登模型来制定2D经典晶状体的熔化,这表明其在任何非零温度下都不稳定性。将这种经典二元性概括为3D近晶型,从而根据各向异性的Abelian-Higgs模型来表达3D义大利到效果转变。

Motivated by striped correlated quantum matter, and the recently developed duality between elasticity of a two-dimensional (2D) crystal and a gauge theory, we derive a dual coupled U(1) vector gauge theory for a two-dimensional (2D) quantum smectic, where the disclination is mapped onto the fractonic charge, that we demonstrate can only move transversely to smectic layers. This smectic gauge theory dual also emerges from a gauge dual of a quantum crystal after a Higgs transition corresponding to a single flavor of its dipole condensation, an anisotropic quantum melting via dislocation proliferation. A condensation of the second flavor of dislocations is described by another Higgs transition describing the smectic-to-nematic melting. We also utilize the electrostatic limit of this duality to formulate a melting of a 2D classical smectic in terms of a higher derivative sine- Gordon model, demonstrating its instability to a nematic at any nonzero temperature. Generalizing this classical duality to a 3D smectic, gives formulation of a 3D nematic-to-smectic transition in terms of an anisotropic Abelian-Higgs model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源