论文标题
使用神经生理学启发的切换状态空间模型来推断爆发抑制过程中的神经动力学
Inferring neural dynamics during burst suppression using a neurophysiology-inspired switching state-space model
论文作者
论文摘要
爆发抑制是一种脑电图(EEG)模式,与以脑代谢抑郁症为特征的深刻灭活的脑状态相关。它的独特特征是近地异构性无效(抑制)的短时段和相对较高的电压活性(爆发)之间的交替。先前的建模研究表明,爆发抑制脑电图是两个与消费(爆发)和生产(在抑制过程中)三磷酸腺苷(ATP)相关的交替大脑状态的表现。这一发现促使我们推断出潜在的状态,以使用开关状态空间模型来表征多通道EEG的瞬时功率的交替大脑状态和基础ATP动力学。我们的模型假设高斯分布数据是两个全球大脑状态之一的广播网络表现。这两个大脑状态被允许随机交替与取决于瞬时ATP水平的过渡概率,该概率根据一阶动力学而演变。管理ATP动力学的速率常数可以随着一阶自回归过程而变化。我们的潜在状态估计是使用顺序蒙特卡洛算法从数据确定的。我们的神经生理学知识模型不仅提供了多频道爆发抑制脑电图的无监督分割,而且还可以对麻醉期间脑失活的水平产生更多的见解。
Burst suppression is an electroencephalography (EEG) pattern associated with profoundly inactivated brain states characterized by cerebral metabolic depression. Its distinctive feature is alternation between short temporal segments of near-isoelectric inactivity (suppressions) and relatively high-voltage activity (bursts). Prior modeling studies suggest that burst-suppression EEG is a manifestation of two alternating brain states associated with consumption (during a burst) and production (during a suppression) of adenosine triphosphate (ATP). This finding motivates us to infer latent states characterizing alternating brain states and underlying ATP kinetics from instantaneous power of multichannel EEG using a switching state-space model. Our model assumes Gaussian distributed data as a broadcast network manifestation of one of two global brain states. The two brain states are allowed to stochastically alternate with transition probabilities that depend on the instantaneous ATP level, which evolves according to first-order kinetics. The rate constants governing the ATP kinetics are allowed to vary as first-order autoregressive processes. Our latent state estimates are determined from data using a sequential Monte Carlo algorithm. Our neurophysiology-informed model not only provides unsupervised segmentation of multi-channel burst-suppression EEG but can also generate additional insights on the level of brain inactivation during anesthesia.