论文标题

复杂网络系统的模型减少方法

Model Reduction Methods for Complex Network Systems

论文作者

Cheng, Xiaodong, Scherpen, Jacquelien M. A.

论文摘要

网络系统由子系统及其互连组成,并为复杂系统的分析,建模和控制提供了强大的框架。但是,子系统可能具有高维动力学,互连的数量和性质也可能具有很高的复杂性。因此,研究网络系统的还原方法是重要的。提供了网络拓扑(互连)结构和节点的动力学的简化方法的概述,同时提供了网络的结构属性,并提供了控制系统的透视图。审查了基于图群集和聚合的第一个拓扑复杂性降低方法,从而产生降低的网络模型。其次,通过使用经典方法的扩展来考虑降低节点动力学,同时保留稳定性和同步性能。最后,处理了一种具有结构的广义平衡方法,用于同时简化拓扑结构和淋巴结动力学的顺序。

Network systems consist of subsystems and their interconnections, and provide a powerful framework for analysis, modeling and control of complex systems. However, subsystems may have high-dimensional dynamics, and the amount and nature of interconnections may also be of high complexity. Therefore, it is relevant to study reduction methods for network systems. An overview on reduction methods for both the topological (interconnection) structure of the network and the dynamics of the nodes, while preserving structural properties of the network, and taking a control systems perspective, is provided. First topological complexity reduction methods based on graph clustering and aggregation are reviewed, producing a reduced-order network model. Second, reduction of the nodal dynamics is considered by using extensions of classical methods, while preserving the stability and synchronization properties. Finally, a structure-preserving generalized balancing method for simplifying simultaneously the topological structure and the order of the nodal dynamics is treated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源