论文标题

灯:学习运动政策以在不确定的环境中反复导航

LAMP: Learning a Motion Policy to Repeatedly Navigate in an Uncertain Environment

论文作者

Tsang, Florence, Walker, Tristan, MacDonald, Ryan A., Sadeghi, Armin, Smith, Stephen L.

论文摘要

移动机器人通常的任务是反复通过其遍历随时间变化的环境导航。这些变化可能表现出一些隐藏的结构,可以学习。许多研究考虑用于在线计划的反应性算法,但是,这些算法并不能利用用于未来任务的导航任务的过去执行。在本文中,我们正式化了最大程度地减少在路线图上执行多个开始目标导航任务的总预期成本,从而引入学习的反应性计划问题。我们提出了一种捕获过去执行的信息的方法,以学习运动政策以处理机器人以前看到的障碍。我们提出了灯框架,该灯框架将生成的运动策略与现有导航堆栈集成在一起。最后,在模拟和现实世界中的一系列实验表明,就预期的时间从开始到目标的预期时间而言,所提出的方法的表现优于最先进的算法10%至40%。我们还评估了在存在本机器人的定位和映射错误的情况下,提出方法的鲁棒性。

Mobile robots are often tasked with repeatedly navigating through an environment whose traversability changes over time. These changes may exhibit some hidden structure, which can be learned. Many studies consider reactive algorithms for online planning, however, these algorithms do not take advantage of the past executions of the navigation task for future tasks. In this paper, we formalize the problem of minimizing the total expected cost to perform multiple start-to-goal navigation tasks on a roadmap by introducing the Learned Reactive Planning Problem. We propose a method that captures information from past executions to learn a motion policy to handle obstacles that the robot has seen before. We propose the LAMP framework, which integrates the generated motion policy with an existing navigation stack. Finally, an extensive set of experiments in simulated and real-world environments show that the proposed method outperforms the state-of-the-art algorithms by 10% to 40% in terms of expected time to travel from start to goal. We also evaluate the robustness of the proposed method in the presence of localization and mapping errors on a real robot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源