论文标题
高均匀和非液化系统中的局部数量波动:高阶力矩和分布功能
Local Number Fluctuations in Hyperuniform and Nonhyperuniform Systems: Higher-Order Moments and Distribution Functions
论文作者
论文摘要
与半径$ r $的球形采样窗口相关的局部数字差异可以根据$ d $二维的欧几里得空间进行分类,这是根据抑制大规模密度波动的程度,从而导致超均匀和非过失均匀的Phyla之间的界限。为了更好地描述密度波动的特征,我们对高阶矩进行了广泛的研究,包括偏度$γ_1(R)$,多余的峰度$γ_2(R)$和相应的概率分布功能$ p [n(r)] $跨前三个型号的大家庭,包括前三个型号,包括超级形式和非外效型号。具体而言,我们分别针对$γ_1(r)$和$γ_2(r)$得出明确的积分表达式,最多涉及三体和四体相关功能。我们还以$γ_1(r)$,$γ_2(r)$和$ p [n(r)] $来得出严格的界限。这些数量的高质量仿真数据是为每个模型生成的。我们还通过新颖的高斯距离度量$ l_2(r)$确定了$ p [n(r)] $与正常分布的接近度。在所有模型中,对于无序的超平均过程,融合到中心极限定理(CLT)通常是最快的。对于标准的非叶状模型而言,与CLT的收敛速度较慢,对于这里研究的抗透明模型最慢。我们证明,I类或任何$ d $维晶格的一维超一样式无法遵守CLT。值得注意的是,我们发现,对于所有遵守CLT的型号,Gamma分布提供了$ p [n(r)] $的良好近似值,使我们能够估计$γ_1(r)$,$γ_2(r)$和$ l_2(r_2(r)$的大$ r $ scalings。对于任何与$ d $相关的$ d $维模型,我们阐明了为什么$ p [n(r)] $分别越来越偏离或远离类似高斯的行为。
The local number variance associated with a spherical sampling window of radius $R$ enables a classification of many-particle systems in $d$-dimensional Euclidean space according to the degree to which large-scale density fluctuations are suppressed, resulting in a demarcation between hyperuniform and nonhyperuniform phyla. To better characterize density fluctuations, we carry out an extensive study of higher-order moments, including the skewness $γ_1(R)$, excess kurtosis $γ_2(R)$ and the corresponding probability distribution function $P[N(R)]$ of a large family of models across the first three space dimensions, including both hyperuniform and nonhyperuniform models. Specifically, we derive explicit integral expressions for $γ_1(R)$ and $γ_2(R)$ involving up to three- and four-body correlation functions, respectively. We also derive rigorous bounds on $γ_1(R)$, $γ_2(R)$ and $P[N(R)]$. High-quality simulation data for these quantities are generated for each model. We also ascertain the proximity of $P[N(R)]$ to the normal distribution via a novel Gaussian distance metric $l_2(R)$. Among all models, the convergence to a central limit theorem (CLT) is generally fastest for the disordered hyperuniform processes. The convergence to a CLT is slower for standard nonhyperuniform models, and slowest for the antihyperuniform model studied here. We prove that one-dimensional hyperuniform systems of class I or any $d$-dimensional lattice cannot obey a CLT. Remarkably, we discovered that the gamma distribution provides a good approximation to $P[N(R)]$ for all models that obey a CLT, enabling us to estimate the large-$R$ scalings of $γ_1(R)$, $γ_2(R)$ and $l_2(R)$. For any $d$-dimensional model that "decorrelates" or "correlates" with $d$, we elucidate why $P[N(R)]$ increasingly moves toward or away from Gaussian-like behavior, respectively.