论文标题

对医学异常检测的深度学习 - 调查

Deep Learning for Medical Anomaly Detection -- A Survey

论文作者

Fernando, Tharindu, Gammulle, Harshala, Denman, Simon, Sridharan, Sridha, Fookes, Clinton

论文摘要

基于机器学习的医学异常检测是已广泛研究的重要问题。在各个医学应用领域都提出了许多方法,我们观察到这些不同的应用程序中的几个相似之处。尽管存在这种可比性,但我们观察到缺乏这些多样化研究应用程序的结构化组织,因此可以研究它们的优势和局限性。这项调查的主要目的是对医学异常检测中流行的深度学习技术进行彻底的理论分析。特别是,我们对最先进的技术进行了连贯和系统的综述,比较和对比其建筑差异以及培训算法。此外,我们还提供了可用于解释模型决策的深层模型解释策略的全面概述。此外,我们概述了现有的深度医学异常检测技术的关键局限性,并提出了关键的研究方向以进行进一步研究。

Machine learning-based medical anomaly detection is an important problem that has been extensively studied. Numerous approaches have been proposed across various medical application domains and we observe several similarities across these distinct applications. Despite this comparability, we observe a lack of structured organisation of these diverse research applications such that their advantages and limitations can be studied. The principal aim of this survey is to provide a thorough theoretical analysis of popular deep learning techniques in medical anomaly detection. In particular, we contribute a coherent and systematic review of state-of-the-art techniques, comparing and contrasting their architectural differences as well as training algorithms. Furthermore, we provide a comprehensive overview of deep model interpretation strategies that can be used to interpret model decisions. In addition, we outline the key limitations of existing deep medical anomaly detection techniques and propose key research directions for further investigation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源