论文标题

纠缠和量子策略降低了Pigou网络中的拥塞成本

Entanglement and quantum strategies reduce congestion costs in Pigou networks

论文作者

Dudhe, Naini, Benjamin, Colin

论文摘要

Pigou的问题在现实生活中有许多应用程序,例如流量网络,图形论,Internet网络中的数据传输等。两个播放器古典Pigou的网络具有独特的NASH平衡,彼此之间的稳定性和无政府状态价格的价格和价格彼此同意。 $ k-$人的古典皮格网络的情况变化,$ n $是总人数。如果我们确定$(n-2)$人的行为,并假设$ k-$的人走路径$ p_2 $,其中$ k <(n-2)$和剩下的路径$ p_1 $,nash equiribium的最低成本将变成$ k $依赖性,我们找到了特定的$ k $,最低成本是绝对的最低成本。与两个人的古典Pigou网络相反,量子两个Qubit Pigou的网络具有最大的纠缠,可以使NASH平衡的成本较低,而与$ k-$ k $ personical classical Pigou的网络相比,它的量子版本可降低NASH均衡策略的成本。这对经典数据网络和量子数据网络中的信息传输都有重大影响。通过采用纠缠和量子策略,可以大大降低量子数据网络中的拥塞成本。

Pigou's problem has many applications in real life scenarios like traffic networks, graph theory, data transfer in internet networks, etc. The two player classical Pigou's network has an unique Nash equilibrium with the Price of Stability and Price of Anarchy agreeing with each other. The situation changes for the $k-$person classical Pigou's network with $n$ being the total number of people. If we fix the behaviour of $(n-2)$ people and assume that $k-$persons take path $P_2$ where $k<(n-2)$ and the remaining take path $P_1$, the minimum cost of Nash equilibrium becomes $k$ dependent and we find a particular $k$ for which the cost is an absolute minimum. In contrast to the two person classical Pigou's network, the quantum two qubit Pigou's network with maximal entanglement gives a lower cost for the Nash equilibrium, while in contrast to $k-$person classical Pigou's network, it's quantum version gives reduced cost for the Nash equilibrium strategy. This has major implications for information transfer in both classical as well as quantum data networks. By employing entanglement and quantum strategies, one can significantly reduce congestion costs in quantum data networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源