论文标题
在有限尺寸的半导体微管中的激子 - 孔子孤子
Exciton-polariton solitons in a semiconductor microwire of finite size
论文作者
论文摘要
由于光与物质的相互作用,激烈的孔子孤子是由耦合的激子 - 光子状态组成的强烈非线性准颗粒。在半导体微腔系统(如半导体微型和纳米线)中,极化子的特征是负质量,当与排斥的非线性激进 - 激子相互作用结合时,会导致明亮的极性孤子的产生。在这项工作中,我们研究了有限大小的微腔波导中明亮的激子 - 孔子孤子的动力学,为此,假定辐射损失是通过外部泵送平衡的。通过雅各比椭圆函数获得了由周期性北极脉冲列车组成的运动方程的精确亮氧化解决方案。发现与脉冲序列的光子和激子成分的能量相对应的精确分析表达式。结果表明,微密封波导的大小(即长度)在获得介质中传播的北极星孤子可以传达的能量的定量估计中起着相关作用。
Exciton-polariton solitons are strongly nonlinear quasiparticles composed of coupled exciton-photon states due to the interaction of light with matter. In semiconductor microcavity systems such as semiconductor micro and nanowires, polaritons are characterized by a negative mass which when combined with the repulsive nonlinear exciton-exciton interaction, leads to the generation of bright polariton solitons. In this work we investigate the dynamics of bright exciton-polariton solitons in a finite-size microcavity waveguide, for which radiative losses are assumed balanced by the external pumping. An exact bright-soliton solution to the model equations of motion, consisting of a periodic train of polariton pulses, is obtained in terms of Jacobi elliptic functions. Exact analytical expressions corresponding to the energies of both photonic and excitonic components of the pulse train are found. Results suggest that the size (i.e. the length) of a microwire waveguide plays a relevant role in obtaining a quantitative estimate of the energy that could be conveyed by polariton solitons propagating in the medium.