论文标题
Jacobi Sigma模型的经典边界场理论通过Poissonization
Classical boundary field theory of Jacobi sigma models by Poissonization
论文作者
论文摘要
在本文中,我们将在Jacobi Sigma模型中构建$ \ mathbb {r} \ times s^{1} $嵌入边界的经典字段理论。通过应用Poissonization过程并概括了Poisson Sigma模型的已知方法,我们根据降低边界的相位空间来表达模型的磁场作为扰动扩展。我们将这些字段计算为二阶,并说明接触歧管的过程。
In this paper, we are going to construct the classical field theory on the boundary of the embedding of $\mathbb{R} \times S^{1}$ into the manifold $M$ by the Jacobi sigma model. By applying the poissonization procedure and by generalizing the known method for Poisson sigma models, we express the fields of the model as perturbative expansions in terms of the reduced phase space of the boundary. We calculate these fields up to the second order and illustrate the procedure for contact manifolds.