论文标题

通过深层GSP拍卖优化多个性能指标,以用于电子商务广告

Optimizing Multiple Performance Metrics with Deep GSP Auctions for E-commerce Advertising

论文作者

Zhang, Zhilin, Liu, Xiangyu, Zheng, Zhenzhe, Zhang, Chenrui, Xu, Miao, Pan, Junwei, Yu, Chuan, Wu, Fan, Xu, Jian, Gai, Kun

论文摘要

在电子商务广告中,广告平台通常依靠拍卖机制来优化不同的性能指标,例如用户体验,广告商实用程序和平台收入。但是,大多数最先进的拍卖机制仅着重于优化单个绩效指标,例如社会福利或收入,并且不适合具有各种,动态,难以估算的电子商务广告,甚至相互冲突的性能指标。在本文中,我们提出了一种称为Deep GSP拍卖的新机制,该机制利用深度学习在著名的GSP拍卖框架内设计新的等级得分功能。这些新的等级得分功能是通过单调分配和平滑过渡的约束来通过深神网络模型实现的。单调分配的需求确保了Deep GSP拍卖良好的游戏理论属性,而平滑过渡的要求确保广告商实用程序在拍卖机制之间切换以实现不同的优化目标时不会波动太大。我们将提出的机制部署在领先的电子商务广告平台中,并通过离线模拟和在线A/B测试进行了全面的实验评估。结果证明了与最先进的拍卖机制相比,深GSP拍卖的有效性。

In e-commerce advertising, the ad platform usually relies on auction mechanisms to optimize different performance metrics, such as user experience, advertiser utility, and platform revenue. However, most of the state-of-the-art auction mechanisms only focus on optimizing a single performance metric, e.g., either social welfare or revenue, and are not suitable for e-commerce advertising with various, dynamic, difficult to estimate, and even conflicting performance metrics. In this paper, we propose a new mechanism called Deep GSP auction, which leverages deep learning to design new rank score functions within the celebrated GSP auction framework. These new rank score functions are implemented via deep neural network models under the constraints of monotone allocation and smooth transition. The requirement of monotone allocation ensures Deep GSP auction nice game theoretical properties, while the requirement of smooth transition guarantees the advertiser utilities would not fluctuate too much when the auction mechanism switches among candidate mechanisms to achieve different optimization objectives. We deployed the proposed mechanisms in a leading e-commerce ad platform and conducted comprehensive experimental evaluations with both offline simulations and online A/B tests. The results demonstrated the effectiveness of the Deep GSP auction compared to the state-of-the-art auction mechanisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源