论文标题
超越tomonaga的挤压场的波动 - luttinger液体范式
Fluctuations of squeezing fields beyond the Tomonaga--Luttinger liquid paradigm
论文作者
论文摘要
tomonaga-液体液体(TLL)的概念在一维量子系统中低能特性的理论描述中无处不在。在这项工作中,我们开发了一个挤压场的路径综合描述,用于除了TLL范式的自由玻色子图片之外无间隙的一维系统。在挤压场的描述中,TL Hamiltonian的Bogoliubov转换的参数变成了动态挤压场,其波动会导致更正自由玻色子的结果。我们得出了一个有效的非线性拉格朗日,描述了挤压场的分散关系,以及TLL的激发与挤压模式之间的相互作用。使用有效的Lagrangian,我们在非相互作用极限下分析了顶点操作员的假想时间相关函数。我们表明,除了TLL范式的自由玻色子模型的标准分支外,由于挤压场的波动而出现了一个侧带分支。此外,我们在一个维度上触及分析了超低玻色气体的密度波动的光谱功能。由于TLL和挤压模式之间的相互作用,我们评估了TLL和侧带分支的相速度和光谱量的重新归一化值。在零温度下,重新归一化的分散关系在动量中是线性的,但是在非零的温度下,由于激发分支的热种群,它们对动量产生了非线性依赖性。
The concept of Tomonaga--Luttinger liquids (TLL) on the basis of the free-boson models is ubiquitous in theoretical descriptions of low-energy properties in one-dimensional quantum systems. In this work, we develop a squeezed-field path-integral description for gapless one-dimensional systems beyond the free-boson picture of the TLL paradigm. In the squeezed-field description, the parameter of the Bogoliubov transformation for the TL Hamiltonian becomes a dynamical squeezing field, and its fluctuations give rise to corrections to the free-boson results. We derive an effective nonlinear Lagrangian describing the dispersion relation of the squeezing field, and interactions between the excitations of the TLL and the squeezing modes. Using the effective Lagrangian, we analyze the imaginary-time correlation function of a vertex operator in the non-interacting limit. We show that a side-band branch emerges due to the fluctuation of the squeezing field, in addition to the standard branch of the free-boson model of the TLL paradigm. Furthermore, we perturbatively analyze the spectral function of the density fluctuations for an ultracold Bose gas in one dimension. We evaluate the renormalized values of the phase velocities and spectral weights of the TLL and side-band branches due to the interaction between the TLL and the squeezing modes. At zero temperature, the renormalized dispersion relations are linear in the momentum, but at nonzero temperatures, these acquire a nonlinear dependence on the momentum due to the thermal population of the excitation branches.